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Imagine that you have some data, and several
competing theories related to these, and want to
quantify the evidence for each theory. In addition,
imagine that you consider some of these theories to
be more likely to be true than the others, before you
collect your data. Or maybe imagine that you are
mostly interested in the value of some variable, that
can be estimated from each of the theories, but are
unsure about how to estimate this using your nor-
mal approaches, because you do not want to discard
either of the theories for good. In each case, Bayes
factors turn out to be a very useful statistical tool to
apply. In this summary of the 1995 review by Kass
& Raftery, I will introduce the basic mindset and
mathematics behind hypothesis testing using Bayes
factors. After this, I will comment on some of the
advantages and disadvantages the method has. Fi-
nally I will mention 2 examples of the application of
Bayes factors, and illustrate what the advantage of
the method was in each case.
Mindset and Math. Traditionally, hypothesis

testing is the process of attempting to reject a null
hypothesis. This usually involves formulating a null-
hypothesis, choosing a level of significance, calculat-
ing a p-value, and rejecting the null-hypothesis if
the p-value is smaller than the chosen level of signif-
icance. If a null-hypothesis fails to be rejected, it is
accepted for the time being. The mindset of using
Bayes factors is different. Instead of attempting to
reject a theory as being true, one attempts to quan-
tify the evidence for the theory. The method uses
Bayes Theorem, and hence allows for prior proba-
bilities to be incorporated. Kass & Raftery intro-
duce the Bayes factor in the following way. Assume
that we collect some data D, and assume that these
occured as a result of either of the hypotheses H1

or H2. Assume that the prior probability of H1 is
p(H1) = 1−p(H2). Bayes theorem then tells us that
the probability of Hi given data is

p(Hi|D) =
p(D|Hi)p(Hi)

p(D|H1)p(H1) + p(D|H2)p(H2)
. (1)

Taking the ratio p(H1|D)/p(H2|D) gives

p(H1|D)

p(H2|D)
=
p(D|H1)

p(D|H2)

p(H1)

p(H2)
= B12

p(H1)

p(H2)
. (2)

B10 Evidence against H0

1 to 3 Not worth more than a bare mention

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

TABLE I. Interpretation of Bayes factor B10 = 1/B01

In words, this reads: Posterior odds =
Bayes factor × Prior odds. So the posterior
odds can be obtained by multiplying the prior odds
with the Bayes factor, and hence the Bayes factor
indicates whether the data mostly support H0 or
H1. The value of the Bayes factor B10 = 1/B01 can
be interpreted using Table I. Note that the table
is adopted from the paper, but since the Bayes
factor compares two theories, the second column
could equally well be titled “Evidence for H1, when
compared to H0”.

One important difference between hypothesis
testing using Bayes factors, and using maximum
likelihood-methods occurs when theories include
some unknown parameters. If Hi has parameters
θi (a vector), p(D|Hi) is obtained by the following
integral

p(D|Hi) =

∫
p(D|θi, Hi)p(θi|Hi)dθi. (3)

So compared to maximum-likelihood methods,
where the optimal parameters are found for observed
data, Bayes Factors calculates the probability of the
observed data given a theory p(D|Hi), as it could be
calculated before the data was taken. Importantly,
notice that integrating over the parameters like this,
effectively introduces a punishment for including ex-
tra parameters, similar to what is normally referred
to as Occam’s razor.

Advantages and Disadvantages. That models
with less parameters are favored might be appealing
to some people. Another thing that is important to
consider when contemplating using Bayes factors, is
the choice of priors. That the method requires prior
distributions both for the hypotheses and parame-
ters might both be a strength and a weakness. It



is a strength, if one has, or can derive, meaningful
priors. This is especially difficult for the parameter
priors p(θi|Hi). Several methods can help with this,
and are described in detail in the paper. If these
prove too difficult, and if the sample size is large,
one might avoid the integrals by using the “Schwarz
criterion”. In this case, one computes a value, S,
which converges to the logarithm of the Bayes fac-
tor as the number of data points goes to infinity.
Generally, the Bayes factor is sensitive to the choice
of parameter priors, and the authors suggest using
several different choices to gain knowledge on this
sensitivity.

One important advantage of the Bayes factors is
that they do not require one to choose between mod-
els. As mentioned above, the Bayes factors describe
the evidence in favor of a given model. This can be
exploited if one has competing theories, but is inter-
ested in knowing a value of an entity r, which can
be found from each of these (e.g. a half-time, when
one is not sure about the exact form a decay takes).
If one has n + 1 hypotheses,H1, . . . ,Hn that are all
compared to a hypothesis H0, and the corresponding
Bayes factors are computed Bi0, then the posterior
probability of Hi can be expressed

p(Hi|D) = Bi0
P (Hi)

P (H0)
/

n∑
m=0

Bm0
P (Hm)

P (H0)
(4)

These can be used as weights in estimating the entity
r

p(r|D) =

n∑
i=0

p(r|D,Hi)p(Hi|D) (5)

From this we can obtain the expectation value
or variance of r without choosing a model defi-
nitely ! That we can work with multiple models, each
weighted by its credibility, and thereby taking model
uncertainty into account in computing e.g. the ex-
pectation value of r, is an advantage of the method
of Bayes factors.

Two examples. As a final part of this summary,
I will mention two examples that illustrate how the
Bayes product may be applied, as presented by Kass
& Raftery.

Ozone exceedances in Houston, TX. A high level
of ozone near the ground indicates air pollution,

and must be decreased. Ozone levels often exceed-
ing a threshold level, had previously been reported
in Houston, and now the measures taken to de-
crease ozone levels had to be evaluated. Given time-
series data on observations of exceedances, three hy-
potheses were formulated: 1) No decrease; 2) Grad-
ual decrease; 3) Abrupt decrease. Since 3) has a
discontinuous likelihood function, normal frequen-
tist methods fail to compare the hypotheses (or are
very involved), while the Bayes factors turned out
to be simple to calculate. The Bayes factors were
B10 = 0.02, suggesting strong evidence against grad-
ual decrease, B20 = 2.75, evidence against no de-
crease was “worth no more than a bare mention”,
and B21 = 135, very strong evidence for abrupt
rather than gradual decrease. So if there was a
decrease, it was probably abrupt. This was hypothe-
sized to be due to improvements in measurement de-
vices, that lead to higher accuracy and less extreme
values measured. This was found to be in agreement
with recent changes in technology. So Bayes fac-
tors proved much simpler to compute, and yielded
a possibility to evaluate three different hypotheses
against each other, and conclude that Houston, TX,
had not implemented measures that lead to a de-
crease in ozone exceedances.

The second example concerns E. coli -bacteria
showing Acetat utilization deficiency (AUD). This
example is biologically involved, so I will exclude
some detail, and describe the important statistical
observations. A group of researchers hypothesized
that AUD would occur due to a specific DNA repair
mechanism. They observed that the consequence of
this would be that two lines of cells (one selected for
trait A, the other unselected for) would, surprisingly,
have equal proportions of cells with AUD (p1 = p2).
In the experiment, p1 turned out to be roughly equal
to p2, but because their null-hypothesis was p1 = p2,
the chi-square test that they used had no way to
quantify the certainty with which p1 = p2. In addi-
tion, they had more data, that could provide statis-
tical priors for another hypothesis. They formulated
the hypotheses H0 : p1 = p2, and H1, an alternative
hypothesis based on the additional cell lines. The
Bayes factor turned out to be B10 = 0.065 corre-
sponding to ”positive evidence for H0”.

In summary, Bayes factors estimate the evidence
for competing hypotheses. They include prior infor-
mation (which can be good or bad), act as an Oc-
cam’s razor, and allows one to compute quantities
given several competing hypotheses.

2


