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Motivation: Locating a buried treasure

We want to locate a buried treasure

* We know that we can find the treasure by estimating the density deviation m(x)

* We are able to measure the gravity anomaly (d) 60 times (on locations s) on a total
distances of 100 meter (x)
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Motivation: Locating a buried treasure

 The measured gravity anomaly can be expressed through a convolution of the density
anomaly:

100
d(s) =f0 glx —s)m(x)dx

* We can express the convolution kernel g(x) as a matrix from the x, h, s values
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Motivation: Locating a buried treasure

 We measure the vertical gravity anomaly d(s), and we want to estimate the density
deviation m(x)

100
d(s) =f gx —s)m(x)dx
0

e Thisis an inverse problemd = Gm
e d: The measured data (60x1)
* G: The function (we can express this as a matrix in this case with size (60x60))
* m: The model/parameters we want to estimate (60x1)

« So we know the solution form: m = (GTG)_IGTd



Motivation: Locating a buried treasure

The solution is very noisy and we don’t know where the treasure is
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Motivation: Locating a buried treasure

 We are unable to locate the treasure as this is an ill-posed problem (unstable solution)
* It happens when the data is dominated by noise
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The L-curve and its use in the numerical treatment of
inverse problems

* Tikhonov regularization is one way of dealing with an ill-posed inverse problem (also
called ridge regression)

* It is a modification to the regular inverse problem (GTG)m = Gld

* Itincludes a smoothing term a? I (The Tikhonov matrix):
* a being the regularization parameter [0;1]
e This is a Oth order Tikhonov regularization

(GTG+ a?I)m = G'd

* By adding regularization, we damp the contributions from noise



The L-curve and its use in the numerical treatment of
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* So we need to estimate the Tikhonov matrix a? I that provides us with the best solution

* The best solution is found when both the residual ||[Gm — d||, and solution ||m||, are
minimal
* When the residual norm is low we have a good fit between data and model

* We want the solution norm to be minimal as we don’t want our fit to be dominated by data errors
e 2-norm is similar to least squares:

IGm —d]|, = \/Zﬁl(((}m)i — di)z and lm||, = X7, (my)?

* A Oth order Tikhonov regularization: m = (GTG + a? I)_lGTd



The L-curve and its use in the numerical treatment of
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The recipe:
1. Make an array of a values

-1
2. Calculate a series of solutions m; = (GTG + a7 I) ~G'd for each value of a

3. |LleeﬁI this m; to calculate the residual norm ||Gm, — d[|, and the solution norm
m
2

4. Plot the results on In-In plot

5. The best solution is found when the the residual ||[Gm — d||, and solution ||m||,
are minimal



The L-curve and its use in the numerical treatment of
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* |lm||, decreases as a function of a and |[[Gm — d||, increases as a function of
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The L-curve and its use in the numerical treatment of
inverse problems

* The best value of « is at the kink/highest curvature
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The L-curve and its use in the numerical treatment of
inverse problems

e Fora=13-10"*%
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Conclusion and outlook

We could locate the treasure by using Tikhonov regularization

In general, many inverse problems are ill-posed so regularization is needed

The L-curve can be used to find the best value of the Tikhonov regularization parameter
a
* «a can be found at the maximum curvature in the L-curve (the L-curve criterion)

For more complex functions, a 1 or 2 order Tikhonov regularization can be applied
instead
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Questions?

Christian Holme, Center for Ice and Climate, The Niels
Bohr Institute
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