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Introduction: 

The article "Combining dependent P-values with an empirical adaptation of Brown’s method" by William 
Poole, David L. Gibbs, Ilya Shmulevich, Brady Bernard and Theo A. Knijnenburg published in 
Bioinformatics, Volume 32, Issue 17, 1 September 2016, Pages i430–i436’ was chosen due to our resent 
experience with the method and the potential relevance it could have for other students. 
Problem/Motivation: 

Given a dataset where one needs to calculate several or many p-values, 
should one account for a possible correlation between data, and in case, 
how is this done? 
Figure 1 shows a figure from our Bachelor thesis, describing the 
hormone Cortisol in patients undergoing colorectal surgery as a function 
of days. The patients were divided into those developing 
cardiopulmonary complications and those who did not. We wanted to 
answer the question ‘What is joint probability that there is a difference 
among the groups given the data is correlated across days?’ 
Correlation solution:  

If the P-values are not correlated, then each should follow a uniform distribution; However if the data is 
correlated, we can’t assume a uniform distribution of p-values; thus, a new method is needed. Brown realised 

this and altered Fisher’s method to include a rescaling factor, c, such that Ψ~𝑐𝜒2𝑓
2 . Here 𝑓 is the DoF of the 

Brown’s method, k is the DoF from Fisher’s method and c is calculated as 𝑐 =
𝑘

𝑓
. Brown showed that these can 

be calculated by: 

𝑓 =
𝐸[Ψ]2

var[Ψ]
, 𝑐 =

var[Ψ]

2𝐸[Ψ]
, 𝐸[Ψ] = 2𝑘, var[Ψ] = 4𝑘 + 2∑ cov(𝑊𝑖 ,𝑊𝑗)

 

𝑖<𝑗

 

Here, 𝑊𝑖 = −2 log 𝑃𝑖. The articles contribution to this result is to evaulte the covariance matrix emperically 
(hence, Empirical Brown’s Method, EBM). An additional method to Fisher’s and Brown’s is also covered in 
the article, created by Kost and McDermott, known as Kost method. This method approximates the 
covariance to a third order polynomial: 

cov(𝑊𝑖 ,𝑊𝑗) ≈ 3.263𝜌𝑖𝑗 + 0.710𝜌𝑖𝑗
2 + 0.027𝜌𝑖𝑗

3  

Where 𝜌𝑖𝑗  is the correlation between the data variables 𝑋𝑖 and 𝑋𝑗. 

The paper takes a non-parametric approch to approximate the covariance matrix in Browns’ method: 

cov(𝑊𝑖 ,𝑊𝑗) ≈ 𝐸[(𝑤𝑖⃗⃗⃗⃗ − 𝐸[𝑤𝑖⃗⃗⃗⃗ ])(𝑤𝑗⃗⃗⃗⃗ − 𝐸[𝑤𝑗⃗⃗⃗⃗ ])], 𝑤𝑖 = −2 log(1 − 𝐹(𝑥𝑖⃗⃗⃗  )) 

Where 𝑥𝑖̅ is a vector of 𝑖’th data points across all correlated measurements 𝑋𝑖. In the example given, it would 
be the 𝑖’th patients level of Cortisol across all 5 days, and be a 5 by 1 vector. 𝐹(𝑥𝑖̅) is then the empirical 
cumulative distribution function to be evaluated individually for each day, that is acting elementwise onto the 
vector 𝑥𝑖̅. The combined P-value is then given by: 

𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1 − Φ2𝑓(Ψ/𝑐) 

With Φ2𝑓 being the CDF of 𝜒2𝑓
2 , Ψ = ∑𝑊𝑖 = ∑−2 log 𝑃𝑖, and 𝑐 and 𝑓 as defined before. 

Simulating data: 

To investigate the appropiateness of the three different tests, the writers simulated data from a multivariate 
normal distribution with correlation matrix 

Σ =

[
 
 
 
 
 
1 𝑏2 ⋯ 𝑏𝑗 ⋯ 𝑏𝑛

𝑏2 1 ⋯ 𝑎 ⋯ 𝑎
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑏𝑗 𝑎 ⋯ 1 ⋯ 𝑎

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑏𝑛 𝑎 ⋯ 𝑎 ⋯ 1 ]

 
 
 
 
 

 

And all means 0. Setting 𝑎 = 0.8 and then sampling 200 points yielded highly correlated data among axes 2 
through 𝑛, and when the 𝑏𝑗 ’s were randomly drawn from a uniform distribution in [−0.5; 0.5] it allowed to 

test axis 1 for correlations with the other axes. This data would not be in accordance with the null hypothesis, 
as the goal was to produce a test that could correctly account for the correlation to give the same results as 
data in accordance with the null. Uniform noise could be added to each axis, and the size is controlled by a 
parameter 𝜉: 
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𝑥̅ = 𝑦̅ + 𝜉𝑈 

Setting 𝜉 = 0 amounted to noiseless data and a signal to noise ratio (SNR) of ∞, while setting 𝜉 = 2.5 yielded 
SNR= 0.5. 
To generate the P-values, the first axis was tested for correlations against the other axes using Pearsons 
correlation test. 
Null-hypothesis data could be simulated by setting 𝑏𝑗 = 0, and doing so should yield a uniform distribution of 

𝑃-values for a perfect test, but instead yielded as shown in the graph below: 

 

It is clear that for correlated data Fishers method is highly unqualified to produce a uniform distribution. The 
Empirical Browns Method yields better results, but they are not perfect. 
Ground truth P-values: 

To simulate the null hypothesis and test it against the already performed tests the first axis was shuffled 
(randomly permuted), giving no correlation with the other axes while retaining the internal correlations of 
the other axes. Then the test statistics were again calculated, and the suffling repeated to ensure no “unlucky” 
shuffling. This was repeated 𝑀 times, and the resulting 𝑃-value is 

𝑃𝑝𝑒𝑟𝑚 =
∑ Θ(Ψ𝑚

∗ ≥ Ψ)𝑀
𝑚=1

𝑀
 

If one has 10 or more exceedances where Ψ𝑚
∗ ≥ Ψ, then one can use the central limit theorem to show that 

𝑃𝑝𝑒𝑟𝑚 is an accurate 𝑃-value estimate. 

For a correlation test able to correctly account for the correlations among the data, it was expected that the 
correlated tests gave the same result for the permuted 𝑃-values as for the non-permuted 𝑃-values. The 
permuted 𝑃-values were called the Ground Truth 𝑃-values, and plotted against the non-permuted 𝑃-values, it 
was expected for a correct test to follow the line 𝑦 = 𝑥. 
Performance results: 

Fishers, Kost’s and the EMB p-values can be seen plotted as a 
function of the ground truth value in fig a. where we can see 
that the Kost and EMB nicely follows the line y=x as just 
described. Fisher’s however, is way more anti-conservative 
and estimates far lower p-values. Looking closer, one can 
conclude that Kost outperforms EMB for noiseless data, as it 
follows the line y=x more precisely and has a smaller error. 
However, when the SNR is reduced from infinity to lower 
values, the mean error from 𝑦 = 𝑥 is smaller for EBM from a 
SNR of about 8 and below. 

The message is that correlated P-values should be considered in the data analysis, and if one expects a clean 
result with SNR above 8, one should use Kost’s method for combining dependent P-values with a polynomial 
description of the covariance matrix. But if the signal is noisy so that SNR<8, one should use the Empirical 
Browns Method and draw the sample 𝑤𝑖, from which correlations can be found. 


