
Alexander Astrup, Thomas Halberg og Sidsel Winther March 6, 2018
...

NoiseOut: A Simple Way to Prune Neural Networks
...

A summary of the paper: M. Babaeizadeh et al., NoiseOut: A Simple Way to Prune Neural Networks,
29th Conference on Neural Information Processing Systems (NIPS 2016).

Neural networks have recently achieved state-of-the-art results using deep learning in various fields such as
image recognition, natural language processing, speech recognition and more. However, neural networks are
usually overparameterized, which results in an excessive usage of memory and computations. One way to deal
with this issue is by pruning the network. The technique presented here works by removing excessive neurons
and parameters, by merging neurons based on their correlations, while ideally maintaining the same accuracy.

Pruning a single neuron

The NoiseOut algorithm works by merging two neurons that are highly correlated. Pseudo-code for the
NoiseOut algorithm can be seen in Algorithm 1. By merging the highly correlated neurons, it’s possible
to keep the signals in the network close to the original, thereby also maintaining the original accuracy. In
the ideal case of a correlation of 1 between the neurons, the network would yield exactly the same result as
before the merge. However, in the non-ideal case the accuracy might change a bit. If further training cannot
compensate for a potential decrease in accuracy, the algorithm cannot compress the network further, and
the algorithm is terminated.

The scheme for pruning a single neuron was not explained in the concerned paper, but as we found it
substantial to the presented material, we chose to include an explanation found in some later work by same
authors (see Scheme 1) [1].

procedure Train(X,Y):

W ←− initialize weights()
for each iteration do

YN ←− generate random noise()
Y’ ←− concatenate(Y, YN )
W ←− back prob(X,Y ′)
while cost(W) ≤ threshold do

A, B ←− find most correlated neurons(W,X)
α, β ←− estimate parameters(W,X,A,B)
W’ ←− remove neurons(W,A)
W’ ←− adjust weights(W ′, B, α, β)
W ←−W ′;

end

end
return W

1. For each i,j,l calculate ρ
(
h
(l)
i , h

(l)
j

)
2. Find u, v, l = arg max

∣∣∣ρ(h(l)i , h
(l)
j

)∣∣∣
3. Calculate α, β := arg min

(
h
(l)
u − αh(l)v − β

)
4. Remove neuron u in layer l
5. For each neuron k in layer l + 1:

- Update the weight w
(l)
v,k = w

(l)
v,k + αw

(l)
u,k

- Update the bias b
(l+1)
k = b

(l+1)
k + βw

(l)
u

Algorithm 1: NoiseOut. X is inputs, and Y is expected output. Scheme 1: Pruning of single neuron. h
(l)
i is the ac-

tivation of the ith neuron in the lth layer, and ρ(·, ·)
is the correlation.

Encouraging correlations between neurons

Correlations between the neurons is a key factor in pruning the network, although there is no guarantee
that the back-propagation results in correlations in the hidden layer. This paper suggests an adjustment to
the cost-function which encourages higher correlations by adding additional output nodes (noise outputs)
before the back-propagation. The noise will differ in each iteration based on the chosen noise model. Three
different noise models have been investigated, namely; Binomial, Gaussian, and Constant noise distributions,

1.of 2



and compared to the non-noise case. They were tested on a 2 layer multilayer perceptron (MLP) (2-2-1)
and a 6 layer MLP (2-2-2-2-2-2-1), to see which noise model contributes to the highest correlations between
the neurons. All noise models yields higher correlation than the non-noise case.

Experiments

The NoiseOut algorithm was implemented with Keras and applied to two well-known networks, LeNet-300-
100 and LeNet-5, on the MNIST dataset.
The LeNet-300-100 network is a fully connected neural network with 300 and 100 neurons in the hidden
layers. It achieves an error rate of 3.05 % on the MNIST dataset. After the pruning it achieves over 96 %
reduction of the parameters, while keeping the same error rate.
The LeNet-5 network consists of two convolutional layers and one fully connected hidden layer. It achieves
an error rate of 0.95 % on the MNIST dataset. It also achieves a parameter reduction of over 98 %, again
while maintaining the same error rate. This is a reduction of the total number of weights in the network by
a factor of 44.
For the SVHN (Street View House Numbers) dataset a deep convolutional neural network with over 1 million
parameters was used. It achieved an accuracy of 93.84 % on the test set and a parameter reduction of 85.39
% for the Gaussian noise case.

Conclusion

The NoiseOut scheme for reducing parameters in neural networks, based on the correlation between neurons,
is presented. It is demonstrated how the introduction of noise outputs can increase the correlation between
neurons in the hidden layers, however, a further explanation of this scheme is not included. It is then shown
how pruning according to this scheme can maintain high accuracy for various datasets and network archi-
tectures.

References

[1] M. Babaeizadeh et al., A Simple yet Effective Method to Prune Dense Layers of Neural Networks https:
//openreview.net/forum?id=HJIY0E9ge 4 November 2016

2.of 2

https://openreview.net/forum?id=HJIY0E9ge
https://openreview.net/forum?id=HJIY0E9ge

