Ensemble Samplers with Affine Invariance

Jonathan Goodman & Jonathan Weare (2010)

E. S. Martiny and A. K. Ravn Niels Bohr Institute

The Problem

Affine invariance

- An affine transformation is a transformation on the form Ax + b that preserves points, parallel lines and parallel planes.
- A move is affine invariant iff the same affine transformation performed before the move algorithm or after the move algorithm produces the same result.

$$X(t+1) = R(X(t), \xi(t), \pi)$$

R(Ax+b, \xi(t), \pi_{A,b}) = AR(x(t), \xi(t), \pi) + b

Stretch move

.

- The stretch move uses another walker in the ensamble to make the proposal for the next move.
- All possible proposals lie on the line that contains both walkers positions in parameter space.

$$X_{k}(t) \to Y = X_{j} + Z(X_{k}(t) - X_{j})$$

$$g(z) \propto \begin{cases} \frac{1}{\sqrt{z}} & \text{if } z \in \left[\frac{1}{a}, a\right], \\ 0 & \text{otherwise.} \end{cases}$$

Walk move

- The walk move uses at least two other walkers in the ensemble (subensemble) to make a proposal for a new move.
- The proposal adds a stochastic variable with same covariance as the subensemble to the current position of the walker.

Performance

Rosenbrock distribution test

ensemble		$f(x_1, x_2) = x_1$				$f(x_1, x_2) = x_2$			
method \downarrow size \rightarrow	→ 1	10	100	∞	1	10	100	∞	
Metropolis	163	_	_	-	322	_	_	-	
stretch moves	-	19.4	8.06	8.71	-	67.0	18.4	23.5	
walk moves, $ S = 3$	-	46.4	19.8	18.6	-	68.0	44.2	47.1	

Sampling from invariant distribution of the stochastic Allen-Cahn equation.

method	time
Metropolis	80
stretch moves	5.2
walk moves, $ S = 3$	1.4

Ending remarks

- These algorithms works the best when the walker ensemble is large.
- The emcee python package utilizes a stretch move algorithm optimized for parallelization to compute MCMCs.
- In the next big release of emcee (v3.0) they are going to implement the walk move along with other ensemble samplers, as well as single-particle Metropolis.