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1 What is the challenge/introduction
When you are trying to sample using Markov chain Monte Carlo, the big challenge is usually
to tune the proposal function, that proposes a new step. A simple way of doing this is to take
Gaussian steps in each dimension, each with its own value of σ. This can end up in a lot of different
meta-parameters to tune, to do your MCMC. Another challenge is that the same step-size/sigma
is not necessarily appropriate throughout one dimension. Maybe your distribution is very wide in
one area and very peaked in another. This paper tries to deal with both problems, both optimizing
the speed of the MCMC and minimizing the number of meta-parameters.
The main idea in the paper is to use an ensemble of walkers to estimate the shape of the distribution
you are sampling. The assumption is that after a burn-in period the ensemble represents the
distribution, and can therefore be used to determine what the proposal function should look like.
The authors presents different proposal functions that is based on an ensemble and shows that
these keep the useful properties of standard MCMC, specifically: Ergodicity and the symmetry of
the standard proposal function of Metropolis Hastings. They do this partly through the use of
affine transformations

1.1 Affine transformation of parameters and affine invariance.
An affine transformation is any transformation on the form y = Ax + b that preserves points,
parallel lines and parallel planes. The trick is if you have e.g. a skewed Gaussian on the form
π(x) ∝ exp
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a good MCMC sampler would use perturbations of order
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(1,−1) direction and perturbations of order one in the (1, 1) direction. However, if you transform
the problem to a parameter space y1 = x1−x2√
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and y2 = x1 +x2 then the new distribution πA(y) ∝
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, is well scaled, and the complexity of sampling is drastically reduced. A general

MCMC sampler on the from X(t+1) = R(X(t), ξ(t), π), where X(t) is the sample after t iterations,
ξ(t) is a sequence of independent identically distributed random variables, and π is a probability
density, is called affine invariant if, for any affine transformation Ax + b, R(Ax(t) + b, ξ(t), π) =
AR(x(t), ξ(t), π) + b. While this property is well desired the authors of the paper are not aware
of a practical sampler that has this affine invariance property for any general class of densities.
Instead the authors present a family of affine invariant ensemble algorithms motivated, in part, by
the Nelder–Mead simplex optimization scheme.

2 Proposed alternatives to Metropolis sampling
2.1 Stretch move algorithm
Given an ensemble of walkers, ~X = {X1, . . . , XN}, the next step for a walker, Xk(t), at time t, is
proposed by the schema

Xk(t)→ Y = Xj + Z(Xk(t)−Xj), (1)
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(a) The Rosenbrock density
used to test the samplers.

(b) Efficiency test for Metropolis, walk-move and
stretch-move. Given in autocorrelation time(times
10−3) for the two parameters of the Rosenbrock den-
sity

Figure 1: Excepts from the paper

where Xj is one other (j 6= k) walker in the ensemble of walkers, ~X, and Z is a scaling variable
that satisfies the density distribution symmetry
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because it is simple. The parameter a > 1 can be adjusted to improve performance. In this way
the set of possible proposals lies within the straight line containing both Xk(t) and Xj .

2.2 Walk move algorithm
The walk move begins by choosing a subset of walkers S form the compliment ensemble to Xk,
~X[k]. It is necessary that |S| ≥ 2 and that the choice of S is independent of Xk. The walk move
offers a proposal Xk → Xk + W where W is normal with mean zero and the same covariance as
the walkers Xj ∈ S. The empirical distribution of S is

πS(x) = 1
|S|

∑
Xj∈S

δ(x−Xj), (3)

and the mean of a random variable drawn form πS is X̄S = 1
|S|
∑
Xj∈S Xj . The covariance is

CS = 1
|S|
∑
Xj∈S(Xj − X̄S)(Xj − X̄S)t and thus if Zj are univariate normally distributed random

variables, then W =
∑
Xj∈S Zj(Xj − X̄S) is with mean zero and covariance CS .

3 The new algorithms vs Metropolis sampling.
They test the efficiency of their algorithms vs standard Metropolis-Hastings sampling on the Rosen-
brock distribution ,see fig(1a)), which main property is that it is hard to sample. The results are
shown in fig(1b), and are the auto-correlations times, which roughly speaking are an estimate of
the number of steps required to generate an independent sample from the distribution. In this
test the stretch move beats Metropolis Hastings by a factor of about 20, and the walk-move by 2.
Also generate samples from the infinite-dimensional measure of an stochastic partial differential
equation, where the walk move performs the best.

4 Ending remarks
The stretch move is the original basis of python package emcee optimized for parallelization. For
the stretch move algorithm to sample a distribution properly it is necessary to use a large ensemble,
if not, the ensemble is not a good representation of the density. The stretch move should give an
easy way of making MCMC without spending a lot of time tuning a proposal function. The walk
move algorithm is scheduled to be included in emcee in the next major release.
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