Faculty of Science

M. Babaeizadeh et al., *NoiseOut: A Simple Way to Prune Neural Networks*, 29th Conference on Neural Information Processing Systems (NIPS 2016)

Alexander Astrup, Thomas Halberg og Sidsel Winther Advanced Methods in Applied Statistics, The Niels Bohr Institute

March 6, 2018 Slide 1/8

Introduction

Overview

Introduction

Basic introduction to artificial neural networks

Proposed method

Encouraging correlations between neurons

Experiments

Conclusion

3 Proposed method

④ Encouraging correlations between neurons

Basic introduction to artificial neural networks.

6 Experiments

M. Babaeizadeh et al., *NoiseOut:* Introduction

et al., NoiseOut: A Simple Way to Prune Neural Networks, 29th Conference on Neural Information Processing Systems (NIPS 2016)

Introduction

Basic introduction to artificial neural networks

Proposed method

Encouraging correlations between neurons

Experiments

Conclusion

- Neural networks provide state-of-the-art results within various fields of research.
- But, often overparameterization results in an excessive usage of memory and computations.
- One solution to this issue is pruning.
- The technique presented here merges highly correlated neurons, while maintaining the accuracy obtained by the network.

• Fun fact: Pruning is naturally occurring in the brains of (especially) babies.

UNIVERSITY OF COPENHAGEN

output layer

M. Babaeizadeh Basic introduction to artificial neural networks et al., NoiseOut: A Simple Way to Prune Neural Networks, 29th Conference on Neural Information hidden layer 1 hidden layer 2 hidden layer 3 Processing input layer Systems (NIPS 2016) Basic introduction to artificial neural networks

Slide 4/8

Introduction

Basic introduction to artificial neural networks

Proposed method

Encouraging correlations between neuron

Experiments

Conclusion

Proposed method

NoiseOut:

```
 \begin{array}{l} \textbf{procedure } Train(X,Y): \\ W \leftarrow initialize_weights() \\ \textbf{for each iteration do:} \\ Y_N \leftarrow generate\_random\_noise() \\ Y' \leftarrow concatenate(Y,Y_N) \\ W \leftarrow back\_prob(X,Y') \\ \textbf{while } cost(W) \leq threshold: \\ A, B \leftarrow find\_most\_correlated\_neurons(W,X) \\ \alpha, \beta \leftarrow estimate\_parameters(W,X,A,B) \\ W' \leftarrow remove\_neurons(W,A) \\ W' \leftarrow adjust\_weights(W',B,\alpha,\beta) \\ W \leftarrow W' \\ \end{array}
```

return W

Pruning of a single neuron:

1. For each *i.j.l* calculate $\rho\left(h_{i}^{(l)}, h_{j}^{(l)}\right)$ 2. Find *u*, *v*, *l* = arg max $\left|\rho\left(h_{i}^{(l)}, h_{j}^{(l)}\right)\right|$ 3. Calculate $\alpha, \beta := \arg\min\left(h_{u}^{(l)} - \alpha h_{v}^{(l)} - \beta\right)$ 4. Remove neuron *u* in layer *l* 5. For each neuron *k* in layer *l* + 1: - Update the weight $w_{i,k}^{(l)} = w_{v,k}^{(l)} + \alpha w_{u,k}^{(l)}$ - Update the bias $b_{k}^{(l+1)} = b_{k}^{(l+1)} + \beta w_{u}^{(l)}$

Introduction

Basic introduction to artificial neural networks

Proposed method

Encouraging correlations between neurons

Experiments

Conclusion

Encouraging correlations between neurons

- Correlations between the neurons is a key factor in pruning the network.
- Correlations are increased by adding *noise outputs*.
- Three noise models have been investigated: Binomial, Gaussian and Constant. These models were tested versus the non-noise case.
- The results only show correlation, not model improvement.

Introduction

Basic introduction to artificial neural networks

Proposed method

Encouraging correlations between neurons

Experiments

Conclusion

Experiments

Method	Noise Neurons	Layer 1 Neurons	Layer 2 Neurons	Parameters	Removed Parameters	Compression Rate
Ground Truth	-	300	100	266610	-	-
No_Noise	-	23	14	15989	94.00%	16.67
Gaussian	512	20	9	15927	94.02%	16.73
Constant	512	20	7	15105	94.33%	17.65
Binomial	512	19	6	11225	95.78%	23.75
No_Noise	-	13	12	10503	96.06%	20.89
Gaussian	1024	16	7	12759	95.21%	18.58
Constant	1024	18	7	14343	94.62%	17.61
Binomial	1024	19	7	15135	94.32%	25.38

Table 2: Pruning a convolutional network trained on SVHN dataset with 93.39% accuracy Table 3: Pruning Lenet-5 on MNIST. In all of the experiments the error rate is 0.95%

Method	Dense Layer Neurons	Parameters	Removed Parameters
Ground Truth	1024	1236250	-
No_Noise	132	313030	74.67%
Gaussian	4	180550	85.39%
Constant	25	202285	83.63%
Bionomial	17	194005	84.30%

Dense Layer Neurons	Parameters	Removed Parameters
512	605546	-
313	374109	38.21%
3	13579	97.75%
33	48469	91.99%
26	40328	93.34%

Conclusion

M. Babaeizadeh et al., NoiseOut: A Simple Way to Prune Neural Networks, 29th Conference on Neural Information Processing Systems (NIPS 2016)

- Introduction
- Basic introduction to artificial neural networks
- Proposed method
- Encouraging correlations between neurons

Experiments

Conclusion

• Introduction of noise outputs can increase the correlation between neurons in the hidden layers.

- Pruning according to this scheme can drastically decrease the number of neurons while maintaining accuracy for highly performing networks.
- Without decreasing accuracy for the MNIST dataset:
 - the number of parameters were decreased by 96% for the LeNet-300-100 network.
 - the number of parameters were decreased by 98% for the LeNet-5 network.