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What follows is a summary of the article “Power-
law distributions in empirical data” by Aaron Clauset,
Cosma Rohilla Shalizi and M.E.J. Newman (ref. [1]).
The article presents tools to analyze datasets w.r.t.
power-laws. Power-laws occur in diverse scientific fields
and are made difficult to characterize due to large tail-
fluctuations. It is therefore of scientific interest to
develop methods for analyzing data hypothesized to
follow such a distribution.

After introducing discrete and continuous power-laws,
the article describes the maximum likelihood estimators
for relevant parameters for both continuous and discrete
distributions, and subsequently goes through goodness-
of-fit test. Finally, the methods introduced are applied
to 24 real-world datasets. This summary follows a
similar structure emphasizing the methodology.

Power-law distributions. A quantity x obeys a
power-law if it is drawn from a distribution propor-
tional to x−α . The parameter α is known as the scaling
parameter. A given quantity commonly obeys the power
law only in some subinterval of (0,∞). Lower and up-
per bounds xmin and xmax for the power law may be
introduced. The article [1] only considers distributions
unbounded from above. For the doubly bounded dis-
crete case, see e.g. ref. [2]. The normalized continuous
distribution has probability density function (PDF)

p(x) = α− 1
xmin

(
x

xmin

)−α
, (1)

whereas normalized discrete distribution has probability
mass function (PMF)1

p(x) = x−α

ζ(α, xmin) . (2)

ζ(α, xmin) is the generalized or Hurwitz zeta-function
ζ(α, xmin) =

∑∞
n=0(n+ xmin)−α.

Note also the definitions of the complementary cumu-
lative distribution function (CDF) for the continuous
case, P (x) =

∫∞
x
p(x′)dx′ = (x/xmin)−α+1, and for the

discrete case, P (x) =
∑∞
y=x p(y) = ζ(α, x)/ζ(α, xmin).
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1This summary tries to match the notation of the article.

Thus depending on context, x represents either a discrete or a
continuous variable, p(x) represents a PDF or a PMF, etc.

Parameter estimation. The article [1] discusses the
estimation of distribution parameters α and xmin. Fol-
lowing article notation, estimators are denoted by “hat-
ted” symbols, e.g. α̂ is the maximum likelihood estima-
tor (MLE) for α.

Since a power-law becomes linear in a log-log plot, a
common approach is to perform a linear least squares-
fit to binned data on a log-log plot. This method is
demonstrated to be inaccurate regardless of binning
convention, as is also displayed in Figure 1.

Continuous distribution α MLE. For observa-
tions {xi}i∈N, the MLE for the scaling parameter is
given by

α̂ = 1 + n

(
n∑
i=1

ln xi
xmin

)−1

(3)

with corresponding standard error σ = (α̂− 1)/
√
n +

O(1/n). n is the number of observations.

Discrete distribution α MLE. Generalized to
arbitrary integer xmin, the MLE α̂ for the discrete case
is found by maximizing the likelihood

L(α) = −n ln ζ(α, xmin)− α
n∑
i=1

ln xi (4a)

as a function of α, or equivalently solving the equation

ζ ′(α̂, xmin)
ζ(α̂, xmin) = − 1

n

n∑
i=1

ln xi . (4b)

The standard error on this α̂ may be estimated as

σ = 1√
n

(
ζ ′′(α̂, xmin)
ζ(α̂, xmin) −

(
ζ ′(α̂, xmin)
ζ(α̂, xmin)

)2
)−1/2

. (4c)

Estimating the lower bound xmin. The article
also discusses the estimation of the lower bound. The es-
timate of α is highly dependent on accurate estimation
of xmin, as is displayed in Figure 2—underestimating
xmin will include non-power-law data whereas overesti-
mating it will discard valid power-law data, increasing
sensitivity to statistical fluctuation. Two estimators
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Figure 1: Figure 3.2 from article [1]. Comparison of different
parameter estimation methods for α with data drawn from (a)
discrete and (b) continuous distributions, namely: the discrete
MLE (3), the continous MLE (4b), a linear least squares fit
to constant-width bins of PDF, and a linear least squares fit
to the CDF rank-frequency plot. Note how poorly all shown
estimators, with the exception of the relevant MLE, perform.

are presented and tested on a particular sampled dis-
tribution. The second one is found to perform better,
although both are described as reasonable.

The first estimator relies on an approximation known
as a Bayesian information criterion (BIC) and men-
tioned to be valid for only discrete distributions. To
estimate xmin, one models the distribution as a set of
independent probabilities for the discrete events below
xmin in combination with the expected power-law above,
and then maximizes the marginal likelihood for xmin.

The alternate estimator (KS), valid for both discrete
and continuous data, maximizes the similarity between
the best-fit power-law and the empirical distribution.
Similarity between CDFs of the data S(x) and the fit
P (x) is here described by the Kolmogorov-Smirnov (KS)
test statistic

D = max
x≥xmin

|S(x)− P (x)|, (5)

but any test statistic can in principle be used. Minimiz-
ing D as a function of xmin yields an estimate for xmin.
Alternate test statistics are proposed, in particular a
modified KS test statistic, re-weighted to distribute
sensitivity uniformly across the entire data range.

Goodness-of-fit tests and model comparison. A
Monte Carlo procedure for performing goodness-of-fit
tests on fitted datasets is described, Using parameters
obtained through the methods described in the previous
sections, a number of synthetic datasets are sampled
from a distribution with the same parameter values.
The KS statistic is then calculated for the synthetic
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Figure 2: Figure 3.3 from article [1]. For a sampled true
distribution (α = 2.5 and xmin = 100) with power-law behav-
ior beyond xmin, this shows how the estimate of α depends
on the chosen cut-off (the lowest value of any fitted point)
xmin. The α-estimate appears relatively forgiving when overes-
timating xmin, however also appears to quickly deteriorate with
underestimation.

datasets and the p -value for the original dataset is then
given as the fraction of synthetic datasets that perform
worse than the original data in the KS test. Note that
in this case, a larger p -value indicates a “better” fit to
the data. Datasets with p ≤ 0.1 are rejected.

For comparing plausibility different models for a given
dataset, the article proposes comparison based on the
likelihood ratio between the two models. This method
may be used to reject a model in comparison with
another and a p -value for the statistical significance of
the rejection is computed based on ref. [3].

Application to real-world data. Finally, the meth-
ods just described are applied to 24 real-world datasets
from a diverse series of fields, estimating scaling param-
eters and comparing different heavy-tailed distributions.
One key observation is that the distinction between a
log-normal and a power-law distribution is very difficult.
For some datasets, scaling parameter estimates incom-
patible with previously published estimates are found,
suggesting reevaluation of any resultant conclusions.
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