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 Abstract. Power-law distributions occur in many situations of scientific interest and have significant
 consequences for our understanding of natural and man-made phenomena. Unfortunately,
 the detection and characterization of power laws is complicated by the large fluctuations
 that occur in the tail of the distribution?the part of the distribution representing large
 but rare events?and by the difficulty of identifying the range over which power-law behav
 ior holds. Commonly used methods for analyzing power-law data, such as least-squares
 fitting, can produce substantially inaccurate estimates of parameters for power-law dis
 tributions, and even in cases where such methods return accurate answers they are still
 unsatisfactory because they give no indication of whether the data obey a power law at
 all. Here we present a principled statistical framework for discerning and quantifying
 power-law behavior in empirical data. Our approach combines maximum-likelihood fitting
 methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and
 likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic
 data and give critical comparisons to previous approaches. We also apply the proposed
 methods to twenty-four real-world data sets from a range of different disciplines, each of
 which has been conjectured to follow a power-law distribution. In some cases we find these
 conjectures to be consistent with the data, while in others the power law is ruled out.

 Key words, power-law distributions, Pareto, Zipf, maximum likelihood, heavy-tailed distributions,
 likelihood ratio test, model selection
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 I. Introduction. Many empirical quantities cluster around a typical value. The
 speeds of cars on a highway, the weights of apples in a store, air pressure, sea level,
 the temperature in New York at noon on a midsummer's day: all of these things vary
 somewhat, but their distributions place a negligible amount of probability far from
 the typical value, making the typical value representative of most observations. For
 instance, it is a useful statement to say that an adult male American is about 180cm
 tall because no one deviates very far from this height. Even the largest deviations,
 which are exceptionally rare, are still only about a factor of two from the mean in
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Power law distributions

Continuous distribution

p(x) = α− 1
xmin

(
x

xmin

)−α
(1)

Discrete distribution

p(x) = x−α

ζ(α, xmin) (2)
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Power-law histogram (continuous distribution)
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Power-law histogram (continuous distribution)
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Linear least squares fit
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n = 10 000 , α = 3.5 , xmin = 1 → α̂LS = 3.34(10) .
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Maximum likelihood parameter estimation

Continuous distribution

α̂MLE = 1 + n

(
n∑
i=1

ln xi
xmin

)−1

. (3)

Discrete distribution

α̂MLE = argmax
α

L (4a)

with
L = −n ln ζ(α, xmin)− α

n∑
i=1

ln xi . (4b)
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Maximum likelihood parameter estimation
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n = 10 000 , α = 3.5 , xmin = 1 → α̂MLE = 3.51(2) .
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Parameter estimation comparison
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Article [1] Figure 3.2. Different α-estimators used with (a) discrete and (b) continuous
power-laws.
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US city population
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x p(x′)dx′
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Estimating cut-off xmin
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Article [1] Figure 3.3. 5000 samples with α = 2.5 , xmin = 100 averaged over 2500 trials.
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Estimating cut-off xmin
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Estimating cut-off xmin

One method: Maximize similarity between measured data distribution
and best-fit distribution. Similarity is here measured with

Kolmogorov-Smirnov test statistic:

D = max
x≥xmin

|S(x)− P (x)| (5)

where P (x) is measured data CDF and S(x) is best-fit CDF.

Additionally, proposed Monte Carlo GOF: Sample a large number of
artificial observations from distributions with the best-fit parameters.
p -value is now the ratio of simulated samples that have worse D. (Note:
Greater p -value is better.)
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US city population

100 101 102 103 104 105 106 107

City population x

10−4

10−3

10−2

10−1

100

P
(x

)

P (x) =
∫∞
x p(x′)dx′

Christian Anker Rosiek Power-Law Distributions in Empirical Data 13 / 14



Rounding off

Not covered here:
Model comparison using likelihood ratios.
Application to real-world datasets.
Appendices: Mathematical and computational details, e.g. MLE
convergence, sampling from power-law distributions, etc.

Follow-up article [2]: Power-law distributions in binned empirical data.
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