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• Probabilities and statistics can encode an amount of belief 
in (data, model, systematics, hypothesis, parameters, etc.) 

• Set notation 
• Comes with examples

Bayes
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Set Notation
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A \B
Whole Space (S)

A B
A intersect B Only the things in  

both A and BB \A B intersect A

A \B = B \A

A union BA [B All the things in  
both A and B

Whole Space (S)

A       B

A [B = B [A
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• The probability of a parameter being in space A, given that the 
parameter is in space B, is the probability of the overlapping (intersect) 
space of A and B divided by the probability of being in space B 

• If intersect is large, so is the probability 

• If space B is small, and knowing that you are in space B, then the probability of 
being in A is large

Moving to Probabilities
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Whole Space (S)

A B
“P of A given B” 

 or
“Probability of getting A given B”P (A|B) = P (A \B)

P (A|B) =
P (A \B)

P (B)

*note that “P(A;B)” is the same as “P(A|B)” just 
using different notation
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• Rearranging some things : 

• We get Bayes’ theorem 

• or sometimes

Moving to Probabilities
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P (A|B) =
P (A \B)

P (B)

P (A \B) = P (B \A) = P (A|B)P (B) = P (B|A)P (A)

A \B = B \A

P (A|B) =
P (B|A)P (A)

P (B)

P (A|B) =
P (B|A)P (A)P
i P (B|Ai)P (Ai)

P (B|A)P (A)R
P (B|A)P (A)dA

(Continuous)(Discrete)
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• One can solve the respective conditional probability equations for       
P(A and B) and P(B and A), setting them equal to give Bayes’ theorem: 

• The theorem applies to both frequentist and Bayesian methods.  
Differences stem from how the theorem is applied and, in particular, 
whether one extends probability to include some degree of belief

Bayes’ Theorem
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P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• One way Bayes’ theorem is often used in normal thinking 
is: 

• Here, P(data) has been omitted (doesn’t depend on 
parameters. It contributes as a constant normalization). 

• The trouble being that it is hard to define P(theory) = a 
“degree of belief” in a theory

Interpretations
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-G. Cowan, “Statistical Data Analysis”

*T. Petersen

P (theory|data) / P (data|theory) · P (theory)

Bayesian statistics proves no fundamental rule for assigning the prior 
probability to a theory, but once this has been done, it says how one’s degree of 

belief should change in the light of experimental data
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Application Overview
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*M.A. Thomson
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• Inherently we are studying things that are unknown and 
how do you appropriately quantify the level of belief? 
• What is the prior on the speed of light in a vacuum being constant in 

all reference frames in 1900 versus 2016? 

• What is the amount of dark energy in the universe? 
• Prior on dark energy in the prevailing ΛCDM cosmological model? 

• Prior on ΛCDM? 

• Bayesian (inference) statistics is not universally reasonable 
and applicable, nor is ‘frequentist’ statistics universally 
reasonable and applicable 

Paradigm
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• In looking for radio loud (θ1) versus quiet (θ2) Active 
Galactic Nuclei (AGN) in a new patch of sky there is a 
devised test with the following likelihoods and priors: 
• The likelihood of correctly identifying a radio loud AGN is              

P(+|θ1)=0.8 while the likelihood of misidentifying (false positive) a 
non-radio loud AGN is P(+|θ2)=0.3 

• From previous studies, it is expected that the selected AGN in a new 
sky patch has a 10% radio loud AGN population, i.e. P(θ1)=0.1, and 
thus has 90% non-loud population P(θ2)=0.9 

• What is the probability that an AGN that is observed as 
radio loud is actually radio loud, P(θ1|+)? 

• What’s better, decreasing the false positives by a factor of 
2 or improving the radio loud AGN selection by 60%?

Astro Example
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*Ex. 3.1 from “Modern Statistical Methods in Astronomy”
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• What is the probability that an AGN that is observed as 
radio loud is actually radio loud, P(θ1|+)? 

• What’s better, decreasing the false positives by a factor of 
2 or improving the AGN selection by 60%?

Answers
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*Ex. 3.1 from “Modern Statistical Methods in Astronomy”

P (✓1|+) =
0.8⇥ 0.1

0.8⇥ 0.1 + 0.3⇥ 0.9
⇡ 0.229

P (✓1|+) =
0.8⇥ 0.1

0.8⇥ 0.1 + (0.3/2)⇥ 0.9
⇡ 0.372

Reducing false positives by factor 2 is better

P (✓1|+) =
0.8⇥ (0.16)

0.8⇥ (0.16) + 0.3⇥ (0.84)
⇡ 0.337

<latexit sha1_base64="58hIIwi5xqzUa+jYbGUB/xWFHTg="></latexit><latexit sha1_base64="58hIIwi5xqzUa+jYbGUB/xWFHTg="></latexit><latexit sha1_base64="58hIIwi5xqzUa+jYbGUB/xWFHTg="></latexit>
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• We want to find out the population of N identical things, 
e.g. fish, cancer cells, gas in a semi-evacuated volume, etc. 
We extract K that are identified (tagged, radioactive 
marked, isotope altered, etc.) and released back into the 
population (N). After sufficiently re-mixing, n things are 
extracted and checked as to whether they have been 
previously tagged (k). 
• For n=60, K=100, and k=10, what is the total population (N)? 

• Natural guess is N=100/10*60, but that gives only a single number. 
What we want is the posterior distribution which provides more 
information.

Exercise #1
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• P(N|k) is the posterior and gives us the conditional probability of the 
total population (N) given k=10.  

• Using Bayes’ theorem, and knowing that we have data where k=10, 
K=100, and n=60 the posterior is proportional to the likelihood of P(k|N) 
• P(k|N) is a ‘sampling w/o replacement’ likelihood and is a hypergeometric probability ( go 

online and find the quasi-binomial form of this likelihood) 

• We will come back to the marginal likelihood later, but for now pick a fixed number 

• The posterior is then produced by using P(k|N) and scanning across values of N 

• Using a flat prior, i.e. prior is constant, plot the posterior distribution

Exercise #1 (cont.)

!13

P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• Here is the posterior distribution for my flat prior

Exercise #1 (cont.)
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N estimate
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Importance of Priors
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• Plot the posterior distribution for k=10 from exercise 1 as 
well as for k=15 

• Because the posteriors are proportional to the 
likelihoods*prior, also plot the likelihoods on the same plots 
as the 2 posterior distributions 
• For a flat prior 

• For a prior of the form 1/N 

• Don’t worry too much right now about normalization of priors, 
likelihoods, and/or posteriors, just make sure they show up on a 
‘reasonable’ scale for the plots 

• Do the estimator values for N differ between the likelihoods 
and the Bayesian posteriors for a flat prior? 
• What about for the 1/N prior?

Exercise #2
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• Prior is 1/N 

• Values in terms 
of 0.5 are a 
binning/
histogram 
artifact, so don’t 
be perplexed if 
your values are 
slightly different

Exercise #2 (cont.)
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N estimate
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k=10 likelihood best estimator value of N:  599.5 
k=15 likelihood best estimator value of N:  400.5
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• The previous priors were not very well informed, so let’s 
use a less abstract scenario where we can include a more 
informed prior 

• Estimate the population (N) of a species of fish in a lake. 
Assume that between tagging of n fish and re-sampling 
there is enough time for sufficient mixing, but not enough 
to alter the total population, e.g. reduction from predators, 
births, pollution induced die-off, etc. 
• From other studies you know that the fish prefer 10±1 m3 of water 

completely free from any fish of the similar species and that the 
entire lake is 5000±300 m3 

• You hypothesize that the population has saturated, so there are ~500 
fish in the lake

Exercise Fish (cont.)
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• With a hypothesized mean of fish, form a gaussian prior 
based on the uncertainties related to the volume 
approximation of both the entire lake as well as the volume 
that the fish prefer (for simplicity we’ll assume they’re aggressive fish and, 
except for mating, kill any other similar species fish which linger within their 10 m3 

volume). For K=50, n=30, and k=4: 
• How sensitive is the posterior to the form or values in the prior? 

• Repeat with only changing from k=4 to k=8. 

• If the gaussian uncertainty is doubled or tripled, how much closer are 
the likelihood estimator values to the posterior estimator values for 
k=4 and k=8? 

• What if another study suggests that the fish actually prefer 9.2±0.2 
m3

Exercise Fish (cont.)
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• For the instance where k=8, gaussian mean=500 and 
σ=61, we can see a large separation between the posterior 
and likelihood

Posterior/Likelihood Differences
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N estimate
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*check whether σ=61 is 
correct. What is the 
uncertainty on the 

gaussian estimate of the 
fish for 10±1 m3/fish in a 
volume of 5000±300 m3 
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• For the instance where k=12, gaussian mean=500 and σ=61 
we’ve got some issues

Even More Extreme
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N estimate
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• The bayesian posterior 
best estimate is ~409, 
but the best likelihood 
estimate is ~125. 

• According to the 
likelihood PDF, how 
likely is it to have a value 
≥ 409? 

• (hint integrate the tail of 
the likelihood distribution 
≥ 409)
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• According to my code and the likelihood PDF, there is a 
probability of ~0.00017 of randomly getting a value ≥409, 
which is the most likely value according to the bayesian 
posterior.

Answers
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So, you’re telling me there’s 
a chance!!!

Uhm, no. Not exactly.
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• N.B. the probability is ~0.00017 of getting a value ≥409, 
which is the most likely value according to the bayesian 
posterior 

• With such a divergence between the likelihood, posterior, 
and dependence on the prior, it is worth investigating 
whether the prior — or its parameters — or the likelihood 
are appropriate 

• The most likely bayesian estimator, i.e. the mode, may not 
be the best test metric versus using the median or mean. 
But it’s clear from the plot that any metric comparing the 
posterior to the likelihood should not find great 
compatibility

Answers
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N estimate
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• For an instance where k=2, gaussian mean=500, and σ=152.5 
we have a likelihood function that has a very wide range of near 
equally likely fish populations. This not terribly informative. 

• By including prior information it is possible to encode some 
belief that can provide useful information. But, the result is 
sensitive to the prior, because the data is not very discriminating.

Other Extrema

!24



D. Jason Koskinen - Advanced Methods in Applied Statistics

• If the prior is very well justified, then the data dramatically 
improves the population estimates < ~250.

Other Extrema

!25

N estimate
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Pr
ob

ab
ilit

y

0

0.0005

0.001

0.0015

0.002

0.0025

0.003 Posterior k=2

Likelihood k=2

Prior



D. Jason Koskinen - Advanced Methods in Applied Statistics

• The form of the previous priors were all gaussian, but there are many, 
many more options 

• For a larger list see http://inspirehep.net/record/1389910/files/suf9601.pdf 

• What happens when you switch to a beta-distribution of similar shape as the prior? 
(Here you can eyeball and tune so that your gaussian and beta-distribution are 
‘similar’) 

• At some point the lake is full of fish, or at least beyond realistically 
populated. What happens to the posterior with a truncated gaussian 
prior? 

• Truncated at 50,000 fish? 

• Truncated at 2,000 total fish? 

• You’ll notice that there is a lower limit on the number of fish related to 
some combination of K, k, and n, which was not included in the 
previous exercise results. What do they look like if the lower bound is 
included?

Additional
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http://inspirehep.net/record/1389910/files/suf9601.pdf

