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For the course Advanced Applied Statistics an article summary is written. The chosen article is
”Planning chemical syntheses with deep neural networks and symbolic AI”, by Marwin H. S. Segler,
Mike Preuss and Mark P. Waller.

I. INTRODUCTION

To form organic molecules chemists use retrosynthe-
sis, a technique that transforms a target molecule into
increasingly simpler constituents. In this way, chemists
can backwardly engineer the molecule with the available
constituent building blocks. Computers should prove
useful to find viable synthetic routes fast by searching
through many options more efficiently than any chemist
can. However, computer-aided retrosynthesis proves slow
and results unsatisfactory. In the article, the use of
Monte Carlo tree search (MCTS) and symbolic artifi-
cial intelligence (AI) to discover retrosynthetic routes is
discussed.

II. METHOD

A. Data selection

The possible transformations are called rules and were
taken from the Reaxys chemistry database, encompassing
12.4 million single-step reactions which basically covers
all known reactions. Two subsets were formed, one for
the rollout neural network and the other for the expan-
sion policy defined later on. For the first, rules were kept
that occurred at least 50 times in published reactions be-
fore 2015. For the latter, rules occurring at least three
times after 2015 were used. This resulted in a sample
size of 17,134 and 301,671 rules respectively. The neural
networks are trained by reactions published before 2015,
whereas for testing and validation, data after 2015 are
used.

B. Monte Carlo tree search

In order to explore the large amount of molecule trans-
formations, a Monte Carlo tree search (MCTS) method
was chosen. The main algorithm presented in the paper
consists of three different neural networks performing the
individual MCTS steps, resulting in the 3N-MCTS algo-
rithm. The first being the ’expansion phase’ puts possible
transformations of the molecule into a tree data shape.
Second, these are passed to the ’in-scope network’ eval-
uating their feasibility (i.e. if the reaction will result
in the wanted products). To rate the quality of an ex-
plored route, the ’rollout phase’ is used which rates the

nodes of a tree based on the availability of the building
blocks passed to the method. A schematic overview of
the method is provided in Figure 1 in Appendix A.

C. Selection phase

Starting at the root node (i.e. target molecule) of
the MCTS tree, the algorithm eq. (2.1) selects the most
promising position of children nodes sequentially until a
leaf node is reached. If a leaf node is visited for the first
time, it is evaluated by the rollout network; otherwise,
it is expanded by use of the expansion network. At each
step t the next node at is selected from all available chil-
dren nodes A(st) in st using eq. (2.1). Here N(at−1, st−1)
is the state-action pair (node-edge pair) that lead to the
current node, c is an exploration constant, Q(st, a) is the
action value (value of the current edge) and N(st, a) is
the visit count to the current node. The prior probabil-
ity term P (s, a) allows exploration of the most promising
lines of analysis first. This term decays when visited re-
peatedly, which allows exploration of other options.

at = argmax
a∈A(st)

(
Q(st, a)

N(st, a)
+ cP (st, a)

N(st−1, at−1)

1 +N(st, a)

)
(2.1)

D. Expansion phase

The expansion phase is triggered as soon as a leaf node
is visited for the second time. In this phase the trained
expansion network identifies the 50 most probable trans-
formations of the leaf node. The expansion network is
a 1 + 5 layer highway network, meaning it allows direct
connections between different layers of the tree. The acti-
vation functions are exponential linear unit (ELU) func-
tions for all layers expect the final one, which uses the
softmax function. The last layer returns a probability
distribution normalised over all transformations for all
the possible reactions.



E. Rollout phase

The rollout network is used to determine the position
value of leaf nodes. If a leaf node is visited for the first
time and the node is neither already a solution nor ter-
minal, the network starts evaluating its position. This
network starts to recursively sample the top ten actions
until solved states or a recursion depth is reached. It then
casts a reward function, which returns a value of 1 if a
state is proven, a value z ∈ [0, 1] depending on the ratio
of solved to unsolved molecules in the child nodes, and
a reward of −1 in case a child state is unproven or ter-
minal. The neural network has been trained in the same
fashion as the expansion network with a relatively high
drop out ratio of 0.4 to increase generalisation potential.
The activation function used was an ELU function.

F. In-scope filter

The in-scope filter removes reactions that are not likely
to result in the target molecule. This task is performed
by a third neural network, which has been trained as a
binary classifier based on reaction data published before
2015. Since data is usually only reported in case of suc-
cessful synthesis, negative data (i.e. failed reactions) was
created by applying the rules from the expansion policy
and taking the reactions that differ from those reported.
The quality of the in-scope filter was tested by comparing
the lowest unoccupied molecular orbital (LUMO) prop-
erties of Diels-Adler reactions to the results of the filter
and looking at the correlation of these two results. This
provides a method to rate the quality of a neural network
without any physical knowledge based on an empiric set
of rules.

G. Update phase

Here the values of the nodes, actions from eq. (2.2),
and visit counts of the edges from the current node to
the root are updated. In eq. (2.2), the indicator function
Ii(s, a) equals 1 if the edge was visited during the ith

iteration and zi is the reward assigned during rollout.
WLmax(bi) from eq. (2.4) is an objective function used
to weight shorter paths as being preferential, with use of
the ξ(bi) function from eq. (2.3), and eliminates routes
with a length longer than the maximum.

Q(s, a) =
1

N(s, a

n∑
i=1

Ii(s, a), ziW (bi) (2.2)

ξ(bi) = length(bi)−
∑

kP (sj , aj) (2.3)

WLmax(bi) = max

(
0,
Lmax − ξ(bi)

Lmax

)
(2.4)

III. RESULTS

The neural network for the expansion policy predicts
the correct solution with an accuracy of 31% out of
301,671 reaction transformations, which the authors note
to be reasonable. Accuracies of 63.3% and 72.5% for the
top 10 and top 50 results were reported respectively, as
is shown in Table II.

The in-scope filter network achieved an area under the
ROC curve of 0.99 on the test set, and 0.94 under the
precision-recall curve. This indicates good performance,
as the ROC curve shows the False Positive Rate (incor-
rect reactions passing the filter) versus the True Posi-
tive Rate (correct reactions passing the filter) despite the
highly artificial nature of the negative training data.

Performance of the 3N-MCTS was evaluated by com-
paring it to other state-of-the-art search methods, being
MC, UCT and BFS. In Table I, the percentage of routes
solved and time taken are listed. This was determined
for finding routes for 497 molecules. On both fronts it
was found that the 3N-MCTS method provides superior
performance.

To assess the quality the resulting routes the method
provides, the authors conducted two Wilcoxon signed-
rank tests in which 45 graduate-level organic chemists
had to choose one of two routes leading to the same
molecule. It was found that the experts did not identify
the machine routes as inferior to those found in literature:
P = 0.26, with 43% and 57% preference respectively as
shown in Figure 2.

IV. DISCUSSION AND CONCLUSIONS

Several difficulties arise in the application of the MCTS
method to the chemical synthesis problem. For one, the
sparsity of the training data is a challenge as the perfor-
mance of deep neural networks is directly correlated to it.
The authors mention stronger but slower algorithms, that
take more context of chemical reactions into account, are
key to finding routes for natural product synthesis which
is impossible in the current setup. In the future, more ad-
vanced versions of the method should become a valuable
assistant in retrosynthesis and the planning thereof.

For computer-aided synthesis, MCTS combined with
neural networks was shown to be effective in performing
retrosynthesis planning. The approach is thirty times
faster faster and and solves for twice as many problems
than other canonical methods. A double-blind AB test
also confirmed that expert chemists find the machine
results of sufficient quality in comparison to literature
routes.
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Appendix A: Figures and Tables

Figure 1: Schematic of MCTS methodology. a, MCTS searches by iterating over four phases. In the selection phase (1), the most
urgent node for analysis is chosen on the basis of the current position values. In phase (2) this node may be expanded by
processing the molecules of the position A with the expansion procedure, which leads to new positions B and C, which are added
to the tree. Then, the most promising new position is chosen, and a rollout phase (3) is performed by randomly sampling
transformations from the rollout policy until all molecules are solved or a certain depth is exceeded. In the update phase (4), the
position values are updated in the current branch to reflect the result of the rollout.

Figure 2: Double-blind AB testing of MCTS-derived routes against literature and BFS routes. a, Chemists did not
significantly prefer literature routes over routes found by MCTS (Wilcoxon signed-rank test, P = 0.26). b, Chemists significantly
prefer routes found by 3N-MCTS over routes generated by heuristic BFS without a policy network and an in-scope filter
(Wilcoxon signed-rank test, P=0.01). A ratio above 0.5 indicates that more than 50% of participants preferred the MCTS
solution.
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Table I

Table II
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