
Classification and Regression with Breiman Random Forests

(Paper: Random Forests - Breiman 2001)

Meghana Killi and Nam Tran
(Dated: Mar 6, 2019)

I. INTRODUCTION

Classification and regression are common prob-
lems in machine learning. The former requires
prediction of a discrete label for a new observa-
tion, based on training data that has already been
grouped into categories. In contrast, the latter re-
quires prediction of a continuous numerical quan-
tity for new observations, based on a function ob-
tained by mapping the input training data to re-
quired training output.

Currently there exist several methods to solve
these problems, the most common being some appli-
cation of decision trees (described in II below). Ran-
dom Forests (detailed in IV) is one such method that
can solve both classification and regression prob-
lems.

The current paper, (Breiman 2001), discusses an
improvement on regular random forests through the
injection of random feature selection (random sub-
space method). Thus, in Breiman Random Forests
(BRF), boostrap aggregating (bagging) is applied to
decision trees in conjunction with the random sub-
space method. The key idea behind this method is
that randomness can reproduce, or even exceed, de-
terministic approaches owing to the Strong Law of
Large Numbers, which states that the sample aver-
age converges almost surely to the expected value
(Loeve 1977). Breiman conjectures that the deter-
ministic method known as AdaBoost emulates a ran-
dom forest at some stage.

In this write-up we will briefly describe the idea
of decision tree learning used to define the random
forest procedure, explain bagging and random sub-
space methods, and finally summarize some of the
results in (Breiman 2001).

II. DECISION TREES

A decision tree can be considered as linear combi-
nation of indicator functions and is usually viewed
as a tree-like model as illustrated in fig. 2. To be
more specific suppose we have made some observa-
tions (x1, y1), . . . , (xn, yn) ∈ X × R. The idea of a
decision tree is to partition the set X in smaller dis-
joint subsets R1, . . . ,RN and determine a classifier

R3

R1

R2

FIG. 1. An example on how the parameter space can be
partitioned. The partition of the parameter will depend
on the algorithm used to generate a decision tree.

f : X → R of the form,

f(x) =

N∑
i=1

ci1Ri (x) (1)

that can predict the values y1, . . . , yn. Here 1Ri
:

X 7→ {0, 1} is the indicator function defined as

1(x) =

{
1, if x ∈ Ri

0, if x /∈ Ri
(2)

Similar to to the least square method the goal is to
determine appropriate constants c1, . . . , cN and in
this case also proper regions R1, . . . ,RN such that
the loss function for the problem is minimized. It
should be noted that although (Breiman 2001) uses
a simple sum of squares loss function for regression
with random forests, the loss function is not unique
and its form should depend on the specific problem.
A proper loss function is important since the predic-
tion of the classifier will highly depend on the chosen
function (Hastie et al. 2009).

III. BOOTSTRAPPING, BAGGING, AND
RANDOM SUBSPACE METHODS

Taking the notation as in section II, the number of
observations in the training data is n, and each data
point has N features if the elements in the vector x
has N elements; e.g xi = (x1, . . . , xN ).



2

c1

x
∈
A
2

c2

x
/∈
A
2

x
∈
A
1

c3

x
/∈
A
1

FIG. 2. A decision tree that corresponds to the function
x 7→ c11R1(x)+c21R2(x)+c31R3(x) withR1 = A1∩A2,

R2 = A1 ∩A{
2 and R3 = A{

1

A. Bootstrapping

Bootstrapping is a sampling technique in which
we randomly sample, with replacement, from the
n known observations, to create multiple bootstrap
samples of n elements each. Since we allow for re-
placement, this bootstrap sample is most likely not
identical to our initial sample. Some data points
may be duplicated, and others may be omitted.

B. Bagging

Bootstrap aggregating (or bagging) is a machine
learning ensemble method that uses bootstrap sam-
pling to independently train classifiers, and then ag-
gregates the predictions. When applied to decision
trees, bagging provides bootstrap samples to sev-
eral decision trees and then combines their outputs.
Here, the number of trees is a free parameter, and
at each node, the algorithm searches over all the N
features to find the one that best splits the data.

C. Random Subspace Method

In the Random Subspace Method, instead of se-
lecting from the total N number of features, we in-
stead randomly generate a subspace with m < N
features at each node. Then, we either directly use
a few features randomly selected from the subspace
(Forest-RI), or use random linear combinations of
the features from the subspace (Forest-RC), such
that the final selected features best split the data.

IV. BREIMAN RANDOM FORESTS

A random forest is a collection of decision trees
working in tandem to create a single (aggregate)
tree, where each decision tree has some contribution
to the final output. For classification problems, each
tree votes on the discrete label output, and the deci-
sion with the most votes will be the decision that the
single tree will take. In case of regression problems,
each tree will output some numerical value and the
single tree will combine them all through a mean or
a weighted mean.

Whereas a normal random forest only utilizes bag-
ging, BRF further extends this technique through
the addition of the random subspace method.
Therefore, in a BRF, after each decision tree receives
a bootstrapped sample as input, and performs ran-
dom subspace sampling of features at each node, the
single (aggregate) tree combines their outputs into
a final decision.

V. SELECTED RESULTS FROM BREIMAN

BRF, unlike single decision trees and regular bag-
ging methods, avoids overfitting because for a suf-
ficiently large number of iterations, the generalized
error converges to some asymptotic value. It is also
mostly insensitive to the final number of features se-
lected to split the tree at each node (usually, 1 or
2 features is enough). Moreover, BRF, especially
Forest-RC is robust to outliers and noise - more so
than Adaboost because Adaboost gives more weight
to misclassified data, thus giving more weight to
noise, whereas random forests give no weight to any
one result.

VI. SUMMARY

Breiman Random Forests utilize a forest of deci-
sion trees that each makes decisions by randomly
sampling from the input data, and from the fea-
tures at each node. For classification, the algorithm
outputs the result that the majority of the trees
agree with (i.e., the mode of the results of individ-
ual trees), and for regression, it outputs the average
value (i.e., the mean (or weighted mean) of the re-
sults of individual trees). It makes use of the Strong
Law of Large Numbers to avoid overfitting, which
is a common problem with other machine learning
algorithms such as boosting and bagging.

L. Breiman. Random forests. Machine Learn-
ing, 45(1):5–32, Oct 2001. ISSN 1573-0565. doi:

10.1023/A:1010933404324. URL https://doi.org/10.



3

1023/A:1010933404324.
T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Pre-
diction. Springer series in statistics. Springer, 2009.
ISBN 9780387848846. URL https://books.google.dk/

books?id=eBSgoAEACAAJ.
M. Loeve. Probability Theory. Springer Science and Busi-
ness Media. Springer, 1977. ISBN 9781468494648.


