Bayesian Inference of a Finite Population Mean Under Length-Biased Sampling

Zhiqing Xu, Balgobin Nandram and Binod Manandhar

Estimating regrowth in a quarry

- 2 sets of three transects
- We count n from a finite population N
- Sampling biased towards large x

Bayesian methodology

- Distribution of shrubs as a function of width (GG) $f(x|\alpha,\beta,\gamma)$
- Probability of counting, given width x

$$P(x|I=1) = \frac{\frac{x}{w}f(x)}{\int \frac{x}{w}f(x) dx}$$

Bayes→Generalised gamma with new parameters.

$$\alpha_{bias} = \alpha + \frac{1}{\gamma}, \qquad \beta_{bias} = \beta, \qquad \gamma_{bias} = \gamma$$

Estimating the finite size distribution

Best estimate of N (Horvitz-Thompson)

$$\widehat{N} = w \sum_{i=1}^{n} \frac{1}{x_i}$$

Assuming

$$P(n_i|N_i) \sim Binomial(N_i, \mu_0)$$

Using Bayes yields negative binomial distribution

Parameter estimation

Bayes applied to find posterior for parameters

$$\pi(\alpha, \beta, \gamma | x) = \frac{GG(x | \alpha, \beta, \gamma) \pi(\alpha, \beta, \gamma)}{\int GG(x | \alpha, \beta, \gamma) \pi(\alpha, \beta, \gamma) d\alpha d\beta d\gamma}$$

- Noninformative priors used
 - Reduces effects from over fitting.
- Can be sampled using Markov-Chain MC or similar sampling schemes

Summary

Biased model fit yields better LH than unbiased

• Better sampling algorithms makes the sampling more effective

• Plans to include covariates in the analysis