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This write-up is a summary of an article by Xu, Nandram and Manandhar entitled ”Bayesian
Inference of a Finite Population Mean Under Length-Biased Sampling”. It has to our knowledge
not been published in any scientific journal

The purpose of the paper by Xu, Nandram and Man-
andhar is to develop a method to characterise a finite
population of shrubs of unknown number and size with
only a very small sampling. This is to better be able
to estimate the regrowth in a quarry. The hope is that
this can be achieved by transecting the quarry only a few
times and assuming that the measurement of a shrub is
biased towards the larger shrubs. A simplified schematic
of the sampling technique can be seen in figure 2. Two
independent replications are performed, each with three
different transects.
It is assumed that the shrubs are distributed according
to a generalised gamma function,
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This is what the paper calls the unweighted pdf. The
paper assumes that the probability of one shrub being
counted is proportional to it’s width perpendicular to
the transect direction (x. The binary value I = 0,1,
denotes whether or not a particular shrub is counted.
P (I = 1, x) = Cx, C = 1/w where w is the length of the
base line (figure 2).
Using this as a prior it is possible to obtain the
weighted pdf or the sample distribution P (x|I = 1) =
g(x|αg, βg, γg) = f(x|α+ 1

γ , β, γ).

A best estimate for the total number of samples in
the finite population is obtained by using the Horvitz-
Thompson unbiased estimator,
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A Bayesian posterior is then created as,

π(Ni|ni, µ0) =
P (ni|Ni, µ0)P (Ni)∫
P (ni|Ni, µ0)P (Ni)dNi

, (3)

where P (ni|Ni, µ0) ∼ Binom(ni|Ni, µ0). The second

replicate is used to find an estimate of N̂i and in turn
estimate µ0. The most likely value of π(Ni|ni, µ0) is

E(Ni|ni, µ0) = ni

µ0
= N̂i, which yields µ0 = 0.0046.

For a single transect the probability of being sampled
is ps = xi/w, then the probability for not being sampled
is: pns = 1− xi/w. we define Ij :

Ij =

{
1 if j ≤ n,
0 if j > n.

FIG. 1: Posterior distributions for α, β and γ.

Then:
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so:
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We are now looking for the posterior parameter distri-
bution or,

π(α, β, γ|xs) =
g(xs|α, β, γ)P (α, β, γ)∫

g(xs|α, β, γ)P (α, β, γ)dαdβdγ
. (4)

P (α, β, γ) = 1
β

1
(1+α)2

1
(1+γ)2 , this is known as the shrink-

age prior and essentially it reduces the effects of over-
fitting. This is to increase the prediction power of the
model.
Since the posterior pdf for the parameters has been con-
structed, it is now possible to sample this using Markov-
chain Monte Carlo and obtain posterior distributions for
all the parameters, the distributions are shown in figure
1.
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FIG. 2: Sketch of the method used to collect data; six
transects perpendicular to a line of length w, data on

the widths (x) of all shrubs hit by these lines is
collected.


