The persistent cosmic web and its filamentary structure- Theory, implementation (I) and illustrations (II)

Authors: T. Sousbie (I and II), C. Pichon and H. Kawahara (II) Presented by: Utkarsh Detha Mon. Not. R. Astron. Soc. 414, 350–383 (2011)

The persistent cosmic web and its filamentary structure – I. Theory and implementation

T. Sousbie^{1,2*}

¹Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ²Institut d'astrophysique de Paris & UPMC (UMR 7095), 98, bis boulevard Arago 75 014, Paris

Accepted 2011 January 19. Received 2011 January 14; in original form 2010 September 20

ABSTRACT

We present DisPerSE, a novel approach to the coherent multiscale identification of all types of astrophysical structures, in particular the filaments, in the large-scale distribution of the matter in the Universe. This method and the corresponding piece of software allows for a genuinely scale-free and parameter-free identification of the voids, walls, filaments, clusters and their

DisPerSe: Discrete Persistent Structure Extractor

Morse theory

- Topological vs Geometrical Properties
- Morse functions:

$$f: I\!R^d \mapsto I\!R$$
$$\nabla_x f(p) = 0, \det \mathcal{H}_f(p) \neq 0$$

• Integral/Field lines:

$$L(t) \in I\!\!R^d$$
, $\frac{dL(t)}{dt} = \nabla_x f$

Manifolds and the Morse Complex

- Ascending and Descending manifolds
- Order of the manifolds defined by the critical point being considered.
- Set of all manifolds: the Morse complex

Simplices, simplicial complexes and the discrete gradient

• *k*-simplex:

$$\sigma_k: \operatorname{Conv}(S), S = \{p_0, \dots, p_k\}$$

- Facets and co-facets.
- Simplicial Complexes.
- Discrete gradient (pairs):

 $[\sigma_k, \alpha_{k+1}], [\sigma_k, \beta_{k-1}]$

Discrete Morse theory

Smooth Morse theory	Discrete Morse theory
Manifolds and points	Simplicial Complexes and Simplices
Gradient and Critical points	 Discrete gradient and critical simplices
Morse functions	Discrete Morse functions
Integral/Field lines	V-paths
 k-ascending/descending manifolds and the Morse Complex 	 Discrete k-ascending/descending manifolds and the Discrete Morse complex (DMC)

Delaunay Tessellation Field Estimator (DTFE)

A mathematical tool for reconstructing a volume-covering and continuous density or intensity field from a discrete point set.

Topological Persistence

• Excursion Set: Set of points which satisfies,

$$(x_1,\ldots,x_n)|\rho(x_1,\ldots,x_n)\geq\rho_0$$

• Filtration: Sequence of N+1 subcomplexes such that,

• Persistence:

Smooth : $\rho(P_a) - \rho(P_b)$, Discrete : $\rho_D(\sigma_a) - \rho_D(\sigma_b)$

Topological Simplification

- Low persistence means short-lived.
- Key idea: low persistence features are possibly noise.
- Eliminate these pairs to remove spurious detection.

Filtering Poisson noise

• Persistence ratio :

$$r(q_k) = \rho_{\mathrm{D}}(\sigma_{k+1}) / \rho_{\mathrm{D}}(\sigma_k).$$

• Significance of a persistence pair:

$$S(q_k) = S_k(r(q_k)) = \operatorname{Erf}^{-1}\left(\frac{P_k(r(q_k)) + 1}{2}\right)$$

• Bias towards higher densities and the nature of DTFE: sparser regions have bigger Voronoi cells; minima are consequently rarer.

 $\begin{aligned} P_0(r) &= \exp[-\alpha_0(r-1) - \alpha_1(r-1)^{\alpha_2}] \\ &\text{with } \alpha \approx [3.694, 0.441, 2.538], \end{aligned}$ $\begin{aligned} P_1(r) &= f_1(1-t) + f_2 t \\ &\text{with } f_1 = \exp[-\beta_0 (r-1)], \quad f_2 = \beta_1 r^{-\beta_2}, \\ &t = (1+\beta_3/u^{\beta_4})^{-1}, \\ &\beta \approx [2.554, 4.000, 9.000, 1.785, 14.000], \end{aligned}$ $\begin{aligned} P_2(r) &= [1+\gamma_0 (r-1)]^{-\gamma_1} \\ &\text{with } \gamma \approx [0.449, 2.563], \end{aligned}$

- Choosing the appropriate significance level: why not as high as possible?
- Comparing 3 scenarios: undersampled simulation, undersampled simulation + noise and pure noise.
- 0-order persistence pairs as the special case.

Persistence based detection of structures using Discrete morse theory is a very successful technique. However, special care needs to be taken when eliminating low-persistence minima because of the scale-free nature of the DTFE.

References:

- Sousbie T., The persistent cosmic web and its filamentary structure- I: Theory and Implementations, 2011, MNRAS, in press (doi:10.1111/j.1365-2966.2011.18394.x)
- 2. Sousbie T., Pichon C. and Kawahara H., *The persistent cosmic web and its filamentary structure- II. Illustrations*, 2011, MNRAS, in press (doi: 10.1111/j.13652966.2011.18395.x)

Thanks!

