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This paper provides the essential background for DisPerSe, a software used for the identification
of large scale structure in the universe by working directly on discrete distribution of galaxies. The
distinguishing feature of the method is the usage of persistence based identification to deal with the
spurious identifications introduced by the shot noise.

I. MORSE THEORY

The goal of DisPerSe is to identify topological features
in density fields described by the galaxy distributions.
Morse theory which relates the geometrical and topolog-
ical properties of a smooth scalar function, is a promising
candidate for achieving the said goal. This theory is ap-
plicable on a special class of functions called Morse func-
tions, which are essentially smooth functions, that have
non-degenerate critical points (a k-order critical point is
a critical point for which the Hessian matrix has k neg-
ative eigenvalues; non-degeneracy here means that there
are only non-zero eigenvalues for the Hessian). The ad-
ditional requirement for non-degeneracy leads to an im-
portant property for field lines: they do not intersect and
that they only originate and terminate at critical points.
For such Morse functions, it is possible to partition the
space into manifolds: regions of space that are occupied
by integral lines originating or terminating at their crit-
ical points. For example, the region of space reached by
integral lines originating from a k-order critical point P,
is called the (d-k) order ascending manifold of P, and the
set of field lines reaching P define the k-order descending
manifold, where d is the dimension of the space. Further-
more, the intersection of these manifolds defines regions
that are covered by field lines that all share their origin
and terminals. These regions are called Morse-Smale n-
cells (where n is the dimension of the cell) and the set
of all the Morse-Smale cells is collectively known as the
Morse-Smale Complex.

A. Discrete Morse Theory

Real-life observations are almost exclusively discrete
and thus we need a discrete analogue for Morse theory.
Discrete Morse theory is defined over simplicial com-
plexes. A k-simplex (σk) is the convex hull of k + 1
affinely independent points, in other words it is the small-
est possible solid with the given set of points for vertices.
Moreover, faces of a simplex σk are defined as simplices
that have vertices that are a subset of the vertices of
σk which is in turn the coface of its faces. A simplicial
complex is defined as a finite union of simplices such
that any face of a simplex in the complex also belongs to

the complex and the intersection of any two simplices is
either empty or a simplex with dimension lower than or
equal to the highest dimension simplex in the initial pair.

A function defined over this complex would assign a
value to every simplex in the complex. The discrete ana-
logue of a gradient field is defined by coupling simplices
in gradient arrows: if a simplex σk has a lower valued
cofacet αk+1 then they form an arrow [σk, αk+1] or if σk
has a higher valued facet βk−1 then the arrow would be
[σk, βk−1]. Now in analogy with a smooth Morse func-
tion, we define a Discrete Morse function as a function
which assigns values to the simplices over the complex
such that there is at most one small coface and at most
one greater face for each simplex. This removes any am-
biguity in the direction of the gradient at any simplex
(analogous to a point in the continuous case). Moreover,
a critical simplex is one which has no higher faces and
no lower cofaces. Now, just like in the continuous case,
we can define field lines as gradient arrows arranged end-
to-end such that the simplices are in a decreasing order.
The analogy can then be extended to define the ascend-
ing and descending manifolds and eventually, a Discrete
Morse Complex.

B. Delaunay tessellation field estimator (DTFE)

To convert a distribution of points into a density field,
we start by taking the Delaunay triangulation of the
points. This divides the space into simplices with ver-
tices being points from the distribution and such that
the circum-hypersphere of each d-simplex includes no
other points from the distribution. This gives us a sim-
plicial complex. Now to assign the values of density, we
attribute each point a density that is inversely propor-
tional to the volume of the dual Voronoi cell of that point.
Thus, for regions with fewer points, we get big Voronoi
cells and therefore lower densities.

II. TOPOLOGICAL PERSISTENCE

Topological persistence is a way of establishing the
importance of topological features in a function. The
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basic idea is to set a threshold and the points that have
the value of the function greater than the threshold
form what is called an Excursion set. As the value of
the threshold is changed, new structures will form
(or get destroyed) everytime a critical point enters the
excursion set. The persistence is then defined as the
difference between the values of the function for a pair
of critical points that is responsible for the creation and
destruction of a structure. Persistence is therefore an
estimate of the longevity of the structure.

To formalize the idea of structures, we identify them as
topological features, called k-cycles. For a 3-d function,
as we decrease the threshold, we get isolated islands
around the maxima. These are called components or
0-cycles. As the threshold goes lower, the islands merge
together at the saddle points of type 1, destroying the
isolated components and forming rings (around holes)
and these are the 1-cycles. For lower thresholds, the
holes get filled up at saddle points of type 2, destroying
the 1-cycles and forming spherical shells (2-cycles)
around minima. Eventually the 2-cycles also get filled
up as we reach the global minimum.

Since we work in the discrete case, we need a discrete
analogue of the above-mentioned ideas. For a simplicial
complex K, we can apply the idea of an excursion set
by studying the evolution of its filtration, which is a
sequence of subcomplexes such that ∅ = K0 ⊆ K1 ⊆
...KN = K and Ki+1 = Ki ∪ δi (δi is a different set
of simplices of K). Here, as the threshold changes, new
simplices enter the filtration and the persistence pairs the
critical simplices (σa, σb) that create and destroy a given
feature, their corresponding persistence being defined by
ρD(σa)− ρD(σb), D is the dimension of the complex.

A. Topological simplification

It is always possible to locally modify the function so as
to cancel non-persistent pairs, thereby eliminating topo-
logical noise. If one modifies the function such that the
values of the function at critical points that form a per-
sistence pair and are neighbours, are interchanged, then
both points will cease to be critical points. Thus we
would have eliminated that topological feature from the
Morse complex, without affecting the rest of the features.
This is the central idea behind topological simplification.

B. Filtering Poisson noise

It is not possible to use the DMC computed over a
distribution directly, the main reason being that there
is a huge number of spurious detections that are caused
by the sampling noise. Mainly due to the scale-free na-
ture of DTFE, it is very sensitive to Poisson noise. Now,
consider a persistence pair qk = [σk+1, σk] then the per-

sistence ratio is given by r(qk) = ρD(σk+1)
ρD(σk)

. Also note

that Pk(r0) is the cumulative probability that a persis-
tence pair with a ratio r ≥ r0 exists in the Delaunay
tessellation of a random discrete Poisson distribution. It
is then convenient to express the importance of a persis-
tence pair as the significance, (expressed in units of σ in
analogy with Gaussian distribution)

S(r(qk)) = Erfc−1

(
Pk(r(qk)) + 1

2

)
where Erfc is the error function.

To estimate Pk(r), a Monte carlo simulation was used,
measuring Pk(r0) as the fraction of persistence pairs of
order k with the persistence ratio r ≥ r0 in a Poisson
sample. From these results, fits for the cumulative prob-
abilities of the different orders of persistence pairs were
obtained (they can be found in the original paper [1]: eq
(5) - eq (9)). The probabilities are plotted w.r.t. the
persistence ratio (figure 1).

FIG. 1. The cumulative probability Pk(r) vs r for a 3D
scale-free Gaussian random field (coloured plain curves)
and in a 50 h−1 Mpc dark matter cosmological simulation
(coloured dashed curves). The red, blue and green curves
correspond to (maxima,1-saddle), (1-saddle,2-saddle) and (2-
saddle,minima) pairs, respectively. The different shades, from
darker to lighter, correspond to 643-, 1283- and 1923-particle
realizations, respectively. The black-dashed curves show fits
to the Gaussian case while the horizontal dashed lines corre-
spond to different significance levels, ranging from S = 1σ to
5σ.

An important thing to note here is that the CDF of
the k = 1 persistence pairs undergoes a transition near
the significance level of 3.5σ, this is expected because
of the nature of DTFE itself: due to the larger size of
the Voronoi cells of minima, the number of these minima
is naturally much lower than other critical points. This
leads to the probability distribution function being biased
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towards higher densities. For a 2-d distribution obtained
by an N-body simulation, figure 2 shows the DMC with
no cancelling of persistence pairs, and a DMC with a
significance level of 4σ. Simply by visual comparison of
the DMC’s with the original distribution, one can tell
that the 4σ DMC traces the filaments very well, without
many spurious filaments.

FIG. 2. The first image shows the original 2-d distribution
and the second and third images show the 0 and 4σ cases,
respectively.

It is, however, crucial to determine the appropriate sig-
nificance level. If one chooses a level that is too low, then
obviously there will be many spurious detections, while a
significance level that is too high will ignore the weaker
filaments (and other structures). To determine the ap-

propriate significance level for the persistence pairs of
various orders, it is useful to see the plot of number of
k-order persistence pairs vs the signigicance levels (figure
3) for three scenarios: first is a cosmological simulation,
second is the superposition of the same simulation and
a random distribution of particles, and third is purely
a random distribution of particles. It can be seen that
when the significance threshold is above 3σ, the shape of
the currve for the persistence pairs of type P1 and P2 (i.e.
[2-saddle point,1-saddle point] pairs, green curves, and [1-
saddle point,maxima] pairs, red curves, respectively) in
S2×128
N and S128 become similar. This suggests that the

main source of persistence pairs is the original distribu-
tion and few structures arise out of the noise. For the case
of type 0 persistence pairs though (i.e. [minima,2-saddle
point] pairs), we see that S2×128

N follows the behaviour
of S128

R more closely. Even so, the number of persis-

tence pairs from the S2×128
N is always higher. The reason

for this behaviour is that the number of minima coming
from physical processes is relatively low compared to the
minima introduced by the noise alone: which is in turn
caused by the scale-free nature of DTFE, as stated be-
fore. This tendency of the 0-order persistence pairs warns
us against choosing a significance that is too high, if one
wants to select a complete DMC.

FIG. 3. Number of persistence pairs of type k as a function
of the significance threshold Sk(r) (in units of σ) in a 250h−1

Mpc large ΛCDM simulation downsampled to 1283 particles,
S128 (filled curves), the same distribution with 1283 additional
randomly located particles, S2×128

N (dot-dashed curve) and a
random distribution of particles within the same volume, S128

R

(dotted curves). The blue, green and red colours correspond
to persistence pairs of type 0, 1 and 2, respectively.
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III. CONCLUSION

It can be seen that the persistence based detection of
cosmological structures is an effective strategy to elim-
inate spurious detections. To re-confirm the detected
structures, Sousbie et. al. [2] also compare the detec-
tion of maxima (which correspond to dark matter haloes)

to previously determined haloes based on the FOF al-
gorithm, to excellent agreement. Moreover, to further
cement the ability of this technique, an optically faint
cluster which was expected at the junction of several fil-
aments by DisPerSe was indeed observed by the X-ray
satellite Subaru. Thus, Soubie et. al. have demonstrated
an elegant technique to detect cosmological strutures, of
every order.
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