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Introduction

This paper compares the performance of two object detec-
tion techniques the first being based on ”distance-from-
feature-space” DFFS and later maximum likelihood. The
training images are decomposed using principal compo-
nent analysis and the eigenvalues and eigenvectors are
then extracted.

This makes it possible to determine whether a new im-
age with an object is a member of this training data class
Q) by extracting the unique coefficients y representing the
new object.

PCA & Maximum likelihood detection

In order to do object detection we first need to decompose
our N images which are of size m X n pixels into 1 X k
arrays where £k = m -n. When all the images are in 1D
array form we stack them to form a new data matrix of
size N X k.

From this data matrix we can calculate the covariance
matrix ¥. Using ¥ along with the eigenvector matrix of
3., ®, the corresponding diagonal matrix of eigenvalues,
A is given by equation (1):

A=3"nd (1)

A PCA analysis is then peformed by using a Karhunen-
Loeve tranform (KL) to extract the eigenvectors that cor-
responds to the largest eigenvalues in A.

From this we get a principal component feature vector
y = &1 %, where X = x —X is the mean-normalized image
vector, and @) is a submatrix of ® containing the M
principal eigenvectors.

The vectorspace spanned by our principal eigenvectors,
we call the feature space (or principal subspace), F =
{®;}M,, and the remaining N — M eigenvectors then span
an orthogonal subspace F = {®;} /..

In a partial KLi expansion, the residual reconstruction
error is defined as

Ex)= Y y?IIIiHQ—ny (2)
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and can be computed from the first M principal com-
ponents along with the quadature sum of the mean-
normalized image X. The ”distance-from-feature-space”
(DFFS) is defined as the component in the orthogonal
subspace F, and is equivalent to the residual error €*(x)
in Eq.(2). The component of x which lies in the feature
space F' is referred to as the ”distance-in-feature-space”
(DIFS).

Unimodal F-space Densities

By assuming that we have a good estimate of the mean
% and covariance X of the distribution from the given
training set x°, the likelihood of an input pattern x, for a
high-dimensional unimodal Gaussian density, is given by
e—%d(x)
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From this sum an estimator of d(x) is made, using the
DFFS in equation (2), as follows
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And the likelihood estimator from d(x) then becomes:
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where Pp(x|Q2) is the true marginal density in F-space
and Py (x|Q2) is the estimated marginal density in the or-
thogonal complement F-space. The optimal value of p can
now be determined by minimizing a suitable cost function
J(p), given by the Kullback-Leibler divergence:
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And this is minimized with respect to p, with the optimal
weight p*, that given by the arithmetic average of the
eigenvalues in the orthogonal subspace F"
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Multimodal F-space Densities

The data is seldom unimodal, and tends to lie on complex
manifolds in image space. If we assume that the F-space
components are Gaussian and independent of the princi-
pal features in F, the DFFS remains the residual €*(x),
while the DIFS= — log P(y) where P(y) describes P(x|Q2)
as an arbitrary density in the principal component vector
y. The density P(y) can be modelled using a Mixture-of-
Gaussians:

N¢
P(y|©) = ng(y;m,&) (9)

where g(y;u,X) is an M-dimensional Gaussian density,
with mean vector p and covariance matrix X, and m; are
the weights of the N, gaussians, satisfying > m; = 1. © is

a set of parameters that completely specifies this mixture,
O = i, li, Eificl. An estimate of these parameters can

be obtained from a training set, {y‘}n% using the ML
principle:
Np
©" = argmax |[ [ P(y'[©) (10)
t=1

which is best solved using the Expectation-Maximization.
And given our previous assumptions, the estimate of the
complete likelihood becomes:

P(x|Q) = P(y|©)Pp(z|0) (11)

where Pz (x|€2), as before, is a Gaussian component den-
sity based on the DFFS.

Results

Training of the facial features is performed on 7,562
“mugshots”. Performance analysis of three different de-
tectors: sum-of-square-differences (SSD), distance-from-
feature-space (DFFS) and Maximum Likelihood (ML)
have been made based on 7,000 test images. The dimen-
sion for the principal subspace for DFFS and ML detec-
tors was limited to five. By independently variating the
detection threshold the receiver operating characteristics
(ROC) curves was established for each detector, see figure
1. The performance of the ML detector (single-scale ver-
sion) peaks with a detection-rate of 95% and in general
exceeds the two other detection methods.

The multiscale ML detector version were also tested
on an alternative database with 2,000 face images with
a 10-dimensional principal subspace. This is resulted in
a correction rate of 97%. As previously presented the
detection is based on use of eigenvectors/eigenfaces. A
generic set of eigenfaces can be calculated based on a set
of training data, figure 2(a) presents an example of the
eight highest prioritized eigenfaces. A unique set of coef-
ficients multiplied with these eigenfaces results in a face
image reconstruction that can be used to face detection.
Figure 2(b) is an original face image normalized while
2(c) is the reconstruction with use of eigenfaces (in this
case 100-dimensional eigenspace representation). The re-
constructed eigenspace image requires approximately 1/5
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Figure 1: The ROC curves displaying the Performance of an
SSD, DFFS and a ML detector.

bytes to encode compared to a standard image compres-
sion technique, figure 2(d) (JPEG).

(b) (c) (d)

Figure 2: (a) Eight eigenfaces, (b) aligned face, (c) eigenspace
reconstruction (85 bytes) (d) JPEG reconstruction (530 bytes).

Discussion

Using eigenspace decomposition and PCA for dimension-
ality reduction, density functions of high-dimensional im-
ages were estimated. Afterwards, a maximum likelihood
approach was successfully experimented on the density es-
timates for object detection. To establish a more robust
face detection algorithm a prior Bayesian probability can
be developed to prevent use of negative image examples
in face detection.



