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INTRODUCTION

The goal in condensed matter science is to determine
the properties of materials and their underlying atomic-
scale structure and dynamics responsible for these prop-
erties. Atomic-scale modelling can be cumbersome, es-
pecially when it comes to non-crystalline or disordered
structures, since such models often have many parame-
ters and the materials are di�cult to probe with conven-
tional methods.
The summarized article [1] describes the time-

dependent Reverse Monte Carlo (RMCt) method, a non-
parametric method for modelling the dynamics of mate-
rials from inelastic neutron scattering experiments. The
method is an evolution of the traditional Reverse Monte
Carlo (RMC) method, originally developed by McGreevy
and Pusztai [2].

OVERVIEW OF RMC

Before I begin my summary it is necessary to be famil-
iar with the basics of RMC.
At it's core RMC is a conceptually simple method. It

is a variation of the standard Metropolis-Hastings Monte
Carlo algorithm and it is a non-parametric method for
structural modelling of materials from experimental data
(e.g. neutron or x-ray di�raction) [3].
The only requirement is some experimental data which

depends on the atomic structure (e.g. the radial distribu-
tion function [4]) and a theoretical method for calculating
the measured quantity given a model for the structure.
To initialize the RMC �tting, one creates an ensemble

of N atoms with periodic boundary conditions within a
volume V. The ensemble can be of any shape, but the size
should be such that the density ρ (which is determined
from V and N) matches ρ of the material in question.
The ensemble is called the con�guration. Afterwards the
basic steps of RMC are as follows [3]:

1. Pick a random atom in the con�guration and move
it a random distance in a random direction

2. Calculate all distances between atoms, which yields
a distance distribution

3. From the distance distribution, calculate the mea-
sured quantity and from that the χ2 test statistic,
given the current con�guration and the experimen-
tal data

4. Accept the random movement of the atom if the
χ2 decreases. If it increases, accept the random
movement with a probability proportional to the
inverse increment of the χ2

5. Repeat steps 1 through 4 until the χ2 is minimized

Et voilá! The �nal con�guration is now the structural
model with the best �t to the experimental data.
One should note that one can �t to several di�erent ex-

perimental data sets simultaneously during step 3. This
means that for nexp independent data sets the χ2 be-
comes a sum of di�erent contributions:
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where the i sum runs over all data sets and the j sum
runs over all data points in each data set. AEi,j is the

j'th measured quantity in experiment i and ARMCt
i,j is

the corresponding quantity calculated form the RMC.
σi,j is the uncertainty on the j'th measured quantity in
experiment i and is often taken to be constant within
experiments (thus σi,j = σi)

RMCt

Now for the actual summary.
The goal for RMCt is to extend RMC to also model

atomic-scale dynamics (in addition to modelling struc-
tural properties). Such a model allows us to calculate
dynamic structure factors which then can be compared
to dynamical data (e.g. from inelastic neutron scatter-
ing).
In RMCt the model consists not only of a single con-

�guration like in RMC, but of a series of con�gurations
divided by a user-determined time di�erence (∆t). The
steps are essentially the same as presented for RMC, ex-
cept you pick a random con�guration from the time series
in step 1 before you pick a random atom.
This modi�cation of step 1 also requires a slight mod-

i�cation of step 2 since a simple distance distribution
is no longer su�cient. In addition to all distances be-
tween atoms within each con�guration, one also needs to
calculate all distances between atoms in all di�erent con-
�gurations. This means that a time dimension is added
to the distance distribution, which now depends on both
space and time.
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FIG. 1: Theoretical MB (blue) and RMCt (red) average
velocity distribution for liquid Ar at 86.3 K. Figure
taken from [1].

However, this raises a statistical issue. Imagine e.g. a
time series with M=51 con�gurations each separated by
the time ∆t (resulting in ttot = 50∆t). Such a time series
will give 50 data points (in the space- and time-dependent
distance distribution) for a time scale of τ = ∆t but only
a single data point for the time scale τ = 50∆t, resulting
in poor statistics at large time scales.

To mitigate this, The author implemented calculations
windows in the RMCt algorithm. That is, for any atom in
each con�guration, the algorithm only calculates the dis-
tances to atoms in con�gurations up a time tW = W∆t
ahead in time (0 < W ≤M , W ∈ N).
This means that only dynamics up to the time scale

of tW ≤ ttot is probed by the RMCt, but one gets a
su�cient amount of statistics for each data point.

AN EXAMPLE

In [1] the use of RMCt is exempli�ed on quasi-
experimental data obtained from a Molecular Dynamics
(MD) simulation of liquid Ar at 86.3 K. The initial con-
ditions (IC) for the RMCt is obtained from a similar MD
simulation at 120 K.

The quasi-experimental data has an average velocity
distribution (VD) similar to the theoretical Maxwell-
Boltzmann (MB) distribution, which allows the MB dis-
tribution to act as an experimental data set to which we
�t the atomic-scale dynamics. However, from Figure 1
([1]) it quickly becomes clear that the RMCt �t has not
converged as the algorithm does not produce a VD that
matches the MB distribution. This is an artefact of the
RMCt method; the 'experimental data' simply does not
contain enough information about the short-range-short-
time dynamics to �t the VD.

To address this issue the author applies constraints to
the RMCt �t. This limits parameter space and results
in faster converging. The constraint is implemented by
biasing the contribution to the χ2 from the VD �t. The
bias is added as:

χ2
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σ2
V D

∑
j

(V Cj − VMB
j )2wj(v) (0.2)

where σV D is the weighting factor of the constraint, wj(v)
is the velocity-dependent bias and V Cj and VMB

j is the
calculated and theoretical velocity distribution, respec-
tively. The weighting factor is de�ned as:

wj(v) =

{
exp

( vj
σexp

)
if σexp > 0

1 if σexp ≤ 0

The author also applied other constraints to the example
with which I will not go into detail.

CONCLUSION AND OUTLOOK

The author have developed a RMCt method to model
atomic dynamics of material based on experimental data.
From Figures 7 through 9 in [1] we see that the author

succeeded in �tting th RMCt model to the dynamical pair
correlation g(r, t) function as well as both static S(Q)
and dynamical S(Q,ω) structure factor and has thereby
developed a tool for non-parametric modelling of atomic-
scale dynamics. Converging issues were addressed by ap-
plying constraints via biasing the underlying calculations
of the χ2.
However, due to lack of the information in the experi-

mental data, a parameter governing the constraint of the
velocity distribution had to be added to the model. Fur-
thermore, a concession to low statistics had to be made
which limited the amount of con�gurations used by the
simulation. This concession was also a parameter set by
the user of the method.
In general, this encapsulates the general problem of

RMCt (and RMC) quite well. An intrinsic property of
RMCt is that it samples a space of all models consistent
with some limited amount of data, which leads to a lack
of uniqueness [4]. Indepedent a priori knowledge of the
system can help limit this problem.
Despite it's issues, RMCt (and RMC) remains an in-

valuable method for atomic-scale modelling in condensed
matter sciences.
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