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INTRODUCTION

The goal in condensed matter science is to determine
the properties of materials and their underlying atomic-
scale structure and dynamics responsible for these prop-
erties. Atomic-scale modelling can be cumbersome, es-
pecially when it comes to non-crystalline or disordered
structures, since such models often have many parame-
ters and the materials are difficult to probe with conven-
tional methods.

The summarized article [1] describes the time-
dependent Reverse Monte Carlo (RMCt) method, a non-
parametric method for modelling the dynamics of mate-
rials from inelastic neutron scattering experiments. The
method is an evolution of the traditional Reverse Monte
Carlo (RMC) method, originally developed by McGreevy
and Pusztai [2].

OVERVIEW OF RMC

Before I begin my summary it is necessary to be famil-
iar with the basics of RMC.

At it’s core RMC is a conceptually simple method. It
is a variation of the standard Metropolis-Hastings Monte
Carlo algorithm and it is a non-parametric method for
structural modelling of materials from experimental data
(e.g. neutron or x-ray diffraction) [3].

The only requirement is some experimental data which
depends on the atomic structure (e.g. the radial distribu-
tion function [4]) and a theoretical method for calculating
the measured quantity given a model for the structure.

To initialize the RMC fitting, one creates an ensemble
of N atoms with periodic boundary conditions within a
volume V. The ensemble can be of any shape, but the size
should be such that the density p (which is determined
from V and N) matches p of the material in question.
The ensemble is called the configuration. Afterwards the
basic steps of RMC are as follows [3]:

1. Pick a random atom in the configuration and move
it a random distance in a random direction

2. Calculate all distances between atoms, which yields
a distance distribution

3. From the distance distribution, calculate the mea-
sured quantity and from that the x? test statistic,
given the current configuration and the experimen-
tal data

4. Accept the random movement of the atom if the
x? decreases. If it increases, accept the random
movement with a probability proportional to the
inverse increment of the y?

5. Repeat steps 1 through 4 until the x? is minimized

Et voila! The final configuration is now the structural
model with the best fit to the experimental data.

One should note that one can fit to several different ex-
perimental data sets simultaneously during step 3. This
means that for n.,, independent data sets the x? be-
comes a sum of different contributions:
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where the ¢ sum runs over all data sets and the j sum
runs over all data points in each data set. AE» is the

j’th measured quantity in experiment i and ARJM Ct g
the corresponding quantity calculated form the RMC.
055 is the uncertainty on the j’th measured quantity in
experiment ¢ and is often taken to be constant within
experiments (thus o; ; = 0;)
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Now for the actual summary.

The goal for RMCt is to extend RMC to also model
atomic-scale dynamics (in addition to modelling struc-
tural properties). Such a model allows us to calculate
dynamic structure factors which then can be compared
to dynamical data (e.g. from inelastic neutron scatter-
ing).

In RMCt the model consists not only of a single con-
figuration like in RMC, but of a series of configurations
divided by a user-determined time difference (At). The
steps are essentially the same as presented for RMC, ex-
cept you pick a random configuration from the time series
in step 1 before you pick a random atom.

This modification of step 1 also requires a slight mod-
ification of step 2 since a simple distance distribution
is no longer sufficient. In addition to all distances be-
tween atoms within each configuration, one also needs to
calculate all distances between atoms in all different con-
figurations. This means that a time dimension is added
to the distance distribution, which now depends on both
space and time.
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FIG. 1: Theoretical MB (blue) and RMCt (red) average
velocity distribution for liquid Ar at 86.3 K. Figure
taken from [1].

However, this raises a statistical issue. Imagine e.g. a
time series with M=51 configurations each separated by
the time At (resulting in ¢4,; = 50At). Such a time series
will give 50 data points (in the space- and time-dependent
distance distribution) for a time scale of 7 = At but only
a single data point for the time scale 7 = 50At, resulting
in poor statistics at large time scales.

To mitigate this, The author implemented calculations
windows in the RMCt algorithm. That is, for any atom in
each configuration, the algorithm only calculates the dis-
tances to atoms in configurations up a time ty = WAt
ahead in time (0 < W < M, W € N).

This means that only dynamics up to the time scale
of ty < tio¢ is probed by the RMCt, but one gets a
sufficient amount of statistics for each data point.

AN EXAMPLE

In [1] the use of RMCt is exemplified on quasi-
experimental data obtained from a Molecular Dynamics
(MD) simulation of liquid Ar at 86.3 K. The initial con-
ditions (IC) for the RMCt is obtained from a similar MD
simulation at 120 K.

The quasi-experimental data has an average velocity
distribution (VD) similar to the theoretical Maxwell-
Boltzmann (MB) distribution, which allows the MB dis-
tribution to act as an experimental data set to which we
fit the atomic-scale dynamics. However, from Figure 1
([1]) it quickly becomes clear that the RMCt fit has not
converged as the algorithm does not produce a VD that
matches the MB distribution. This is an artefact of the
RMCt method; the ’experimental data’ simply does not
contain enough information about the short-range-short-
time dynamics to fit the VD.

To address this issue the author applies constraints to
the RMCt fit. This limits parameter space and results
in faster converging. The constraint is implemented by
biasing the contribution to the x? from the VD fit. The
bias is added as:
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where oy p is the weighting factor of the constraint, w; (v)
is the velocity-dependent bias and VjC and VjM B is the
calculated and theoretical velocity distribution, respec-
tively. The weighting factor is defined as:
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The author also applied other constraints to the example
with which I will not go into detail.

CONCLUSION AND OUTLOOK

The author have developed a RMCt method to model
atomic dynamics of material based on experimental data.

From Figures 7 through 9 in [1] we see that the author
succeeded in fitting th RMCt model to the dynamical pair
correlation g(r,t) function as well as both static S(Q)
and dynamical S(Q,w) structure factor and has thereby
developed a tool for non-parametric modelling of atomic-
scale dynamics. Converging issues were addressed by ap-
plying constraints via biasing the underlying calculations
of the x2.

However, due to lack of the information in the experi-
mental data, a parameter governing the constraint of the
velocity distribution had to be added to the model. Fur-
thermore, a concession to low statistics had to be made
which limited the amount of configurations used by the
simulation. This concession was also a parameter set by
the user of the method.

In general, this encapsulates the general problem of
RMCt (and RMC) quite well. An intrinsic property of
RMCt is that it samples a space of all models consistent
with some limited amount of data, which leads to a lack
of uniqueness [4]. Indepedent a priori knowledge of the
system can help limit this problem.

Despite it’s issues, RMCt (and RMC) remains an in-
valuable method for atomic-scale modelling in condensed
matter sciences.
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