
Wild Binary Segmentation for multiple change-point detection

Magnus Berg Sletfjerding
(Dated: March 6, 2019)

ARTICLE LINK

https://arxiv.org/abs/1411.0858

I. INTRODUCTION

The accurate treatment and analysis of noisy time
series is an ubiquitous challenge across scientific disci-
plines. Within the field of single-molecule analysis of
biomolecules, low signal-to-noise ratios are a constant
problem when fitting models of stochastic change in
piecewise-stationary data.

Binary Segmentation is a simple and powerful method
for ”slicing” data into pieces which come from the same
distribution, by finding ”change points” in a time series.
While Binary Segmentation is widely utilized in the anal-
ysis of time series involving docking and binding on long
(s) timescales, it performs significantly less well if the
data exhibits multiple change points, especially if they
are close to each other.

The article presented proposes an improvement on the
classical Binary Segmentation algorithm, in order to an-
alyze data with multiple changepoints accurately.

II. BINARY SEGMENTATION

The simplest time-series data model can be expressed
as

Xt = ft + εt, t = 1, . . . , T

where ft is a one-dimensional signal which has an un-
known number of changepoints N , with unknown loca-
tions η1, . . . , ηN , and εt is a normal random variable cen-
tered at 0.

Classical Binary Segmentation utilizes the CUSUM
statistic, which is defined as follows:

X̃b
s,e =

√
e− b

n(b− s+ 1)

b∑
t=s

Xt −

√
b− s+ 1

n(e− b)

e∑
t=b+1

Xt

where s ≤ b < e and n = e− s+ 1.
The Binary Segmentation algorithm finds the first

changepoint, b0 by maximizing |X̃b
s,e|, after which it will

look for changepoints in the two new segments of the
data.

Finally, the Binary Segmentation stops if the |X̃b
s,e| for

any b0 is lower than a set threshold.

FIG. 1. True function in thick black, observed data in thin
black, |X̃t

0,300| plotted in blue and |X̃t
101,199| plotted in red.

FIG. 2. Heat map of the values of |X̃t
s,e| as a function of s and

e. Dashed lines indicate the maximum in either dimension,
and in this case, the maximum is located at (s, e) = (131, 170)

A. Problems with the Binary Segmentation
Algorithm

As seen in Figure 1, a large window (e.g. calculating

|X̃t
0,300|) will cause a misrepresentation of the data, and

b0 is estimated to be at t = 100. However, with a smaller
window, the maximizer accurately finds the change point
at t = 150. This point is further illustrated by Figure 2,
where the values clearly show that the window size to
find this particular change point is much smaller than
300 frames. The need for a more robust method for esti-
mating the peaks is therefore obvious.

2

FIG. 3. Left: linear trend data (spots) and true functions
(black lines). Right: frequency histograms of the found
change points.

III. WILD BINARY SEGMENTATION

Wild Binary Segmentation works in a similar manner
as Binary Segmentation, but differs in the way it finds
b0.

For Wild Binary Segmentation, FM
T is a set of M ran-

domly sampled intervals [sm, em],m = 1, . . . ,M where
[sm, em] have been drawn from 1, . . . ,M .

While Binary Segmentation uses a simple maximiza-
tion of |X̃b

s,e| over the entire data, Wild Binary Segmen-

tation instead maximizes |X̃b
sm,em |, hence forming a 2-

dimensional space to maximize, with m on one axis, and
b on the other.

Like the Binary Segmentation algorithm, the Wild Bi-
nary Segmentation also stops if |X̃b

s,e| is lower than a set
threshold.

IV. PERFORMANCE

The Wild Binary Segmentation was compared to a se-
ries of publicly available datasets, and was shown to out-
perform classical Binary Segmentation in all cases. As
seen in figure 3, Wild Binary Segmentation still misclas-
sifies the middle of a linear (i.e. not instant) transition.
Even so, the algorithm still manages to find the ”true”
change points, asserting its advantage over typical Binary
Segmentation.

V. CONCLUSION

The Wild Binary Segmentation algorithm is a signif-
icant improvement upon the classical Binary Segmenta-
tion algorithm. While it does not perfectly find all change
points, and misclassifies some points, it still does not
mask points in the same way as the Binary Segmentation
algorithm does, as its implementation ensures stochastic
selection of segments. This prevents agains successive er-
rors being repeated, as the repetition of random draws
allows the user to withdraw a distribution of results, if
they remember to rerun the experiments a series of times.

