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Abstract—In this article we present the results of a two part
project. The first part involves investigating the compatibility
of different variations of Zipf’s law with four different forms
of Danish texts; the Bible, news articles, Wikipedia articles
and subtitles. For each type of text we compare the idealized
Zipf’s law with three different variations of it using maximum
likelihood ratios. We also generate data using Monte Carlo
simulations, fit parameters for each of the three versions. These
fits are compared to the data sets using a Kolmogorov–Smirnov
goodness-of-fit test.
We find that two of the three alternative hypotheses fit better to
all four data sets compared to the null-hypothesis, and that of
these two the simplest (a pure power law) fits the data the best.
The second part involves setting up a Recurrent Neural
Network that is capable of generating Danish bible verses, and
a qualitative and quantitative analysis of its ability to imitate
the Danish language. We find that after 60,000 iterations the
network can imitate words in Danish bible verses with an
accuracy of (99.3± 0.3)%.
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PART 1: ZIPF’S LAW

I. INTRODUCTION

Danish is a North Germanic Language and is spoken by
around six million people. The Danish online dictionary con-
sists of around 125,000 words [1], and the frequency of which
the different words occur in sentences, articles, subtitles etc.
vary. The words in a text can be ranked after the frequency
at which they occur, and the relationship between the number
of occurrences of a word and its rank can be quantitatively
described by Zipfs’s law. Zipfs’s law is an empirical law
formulated in the mid 20. century, and it describes a regularity
in the usage of language [4]. It states that, for a sufficiently
large amount of words in a text, the usage of a word will
decline proportionally to the inverse rank:

n ∝ 1

rα
, (1)

for α close to 1. E.g., the second most used word will occur
about half as many times as the most used and so on. Zipf’s law
also has an alternative formulation describing the relationship
between the number of words appearing n times and n. If, in

total, there are 100 different words that each appear only one
time in the text, this formulation of Zipf’s law suggests that
50 words will be counted two times, etc.:

f(n) ∝ 1

nβ
, (2)

where β = 1+1/α [4]. In other words, the frequency of word
occurrences is taken as the independent variable. Ziph’s law
in general is said to describe the distribution of many other
ensembles, such as employees in a firm, population of cities,
believers of religions [2].
In this part of the project we use large samples of Danish texts
to compare three different models of Ziph’s law against the null
hypothesis, α = 1, by doing (maximum) likelihood ratio (LR)
tests. We also use maximum likelihood (ML) estimation on
the three models, fitting the parameters, and comparing data
generated by Monte Carlo simulation with the original data
using a Kolmogorov-Smirnov test. The text analysis in this
part of the project largely follows the same procedures as [4],
but the methods are applied to Danish texts instead.

II. THEORY

Since Zipf’s law describes a discrete rank versus frequency
relationship, the normalization of the probability mass function
(PMF) includes the discrete sum of the ranks n one to infinity:

∞∑
n=1

f(n) = 1. (3)

The normalisation of eq. (2) yields the null hypothesis H0 with
α = 1→ β = 2:

f0(n) =
6

π2n2
. (4)

The first alternative hypothesis, H1 (α 6= 1), that we wish
to test against H0 is given by:

f1(n) =
1

ζ(β, 1)nβ
, (5)

for β > 1, and where ζ(β, 1) =
∞∑
k=1

(1 + k)−β denotes the

Riemann-Zeta function [4].
A power law in the PMF, f(n), does not lead to a power law

in the corresponding complementary cumulative distribution,

S(n), given by S(n) =
∞∑

n′=n

f(n′); the probability of getting

a frequency larger than or equal to n. However, if the power
law is instead in the cumulative distribution, S2(n) =

(
1
n

)β−1
for β > 1, we use that:

f(n) = S(n)− S(n+ 1), (6)
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Fig. 1. Plots showing the 4 texts sorted after (Left) the number of times each word appears in the texts as a function of rank (most to fewest) n(r) and (Right)
the frequency of words occurring the same number of times f(n)

and obtain the second expression for f(n):

f2(n) =
(a
n

)β−1
−
(

a

n+ 1

)β−1
. (7)

This is the second hypothesis, H2, that we wish to investigate.
For the third distribution and hypothesis, we will test the
frequency distribution derived by B. Mandelbrot [3]. In this
formulation, the power law is contained in an underlying
theoretical frequency-rank relation n(r). f3 takes the (slightly
rewritten) form :

f3(n) =
B(n+ 1− β, β)

B(2− β, β − 1)
(8)

for 1 < β < 2. Here B(x, y) is the beta function (defined in
term of the gamma function Γ(x)) and not the beta distribution.

The difference between the three distributions f1, f2 and f3
is clearest when n is small. f1 appears as a straight line (with
a slope of −β), whereas f2 and f3 respectively are convex
and concave (seen from above) in a log-log plot. The null
hypothesis H0 is a perfectly straight line (slope of -2) in a
log-log plot, which is also how it is most often recognized.

III. METHODS

The texts used in this part of the project are the Danish
Bible (both new and old testament), various Danish newspaper
articles, various Danish Wikipedia articles and various Danish
subtitles. The Danish Bible was downloaded in its entirety
from the Gutenberg Project website [5][6]. The news articles
and Wikipedia articles were gathered from the Leipzieg
Corpora Collection webpage [7] and each contain 1,000,000
words. Finally, the subtitles were gathered from a github

repository by Hermit Dave[8] and contains 501,080 words.

The texts were sorted two times; one time by the frequency
by which each word appear in the text and another time by
using this frequency as the independent variable (effectively
counting how many words only appear one time in the text,
how many two times, etc.). The first sorting is shown in the
left plot of Fig. 1 and the second in the right plot.
Corral and Ferrer [4] show that in the first case the fit results of
the exponent (α or β) are biased. This, together with the actual
shape of the plots in Fig. 1, motivated us to focus only on
using the frequency as the independent variable (i.e. only use
the right part of Fig. 1), which also means that the parameter
of interest is β.

Since only one of the hypotheses is nested (H1) compared
to H0, we needed to compute the necessary test statistics to
perform a likelihood ratio test for the other two hypotheses. We
simulated 10000 pseudo experiments each with 10000 events
sampled from our null-hypothesis, eq. (2), using a Discrete
Inverse Transformation Monte Carlo Method. Since this is
a discrete method, there is no analytical function to invert.
Instead, a uniformly distributed number u ∈ [0, 1] is generated.
Then one finds the value of k such that:

F (xk−1) < u < F (xk), F (xk) =

k∑
i=1

f(xi). (9)

The value of k is then distributed according to f(x) [9].
For each pseudo experiment we calculated the likelihood ratio
between H0 and Hi for i ∈ {1, 2, 3} being the alternative
hypotheses given by equations (5), (7) and (8). The likelihood
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ratio is given as:

LR = −2 ln
L0

Li
(10)

The resulting distributions of likelihood ratios are shown in
Fig. 2.

As can be see from Fig. 2 only the likelihood ratio values
between H1 and H0 are χ2-distributed, as expected accord-
ing to Wilk’s theorem for nested hypotheses[10]. The two
other distributions are shaped closer to Gaussian distribu-
tions. Integrating from −∞ and up, we find the upper 3σ
confidence limit (CL). For the three hypothesis we found:
CL1 = 10.98,CL2 = −5.28,CL3 = −363.18.

Having set up the test statistics based on the MC simulation,
we performed a hypothesis test between H0 and the different
hypothesis. For each of the four texts, we perform a maximum
likelihood (ML) fit using iMinuit[16] as the minimizer. This is
done on the real data, and not using the MC simulated data.
From the ML fit, the likelihood ratio (LR) is used as the test
statistic to either reject H0 at 3σ or not. If the LR is below
the 3σ CL the alternative hypothesis is no-better than the null
hypothesis, and we exclude that specific function from further
analysis.

For the remaining hypotheses we perform a Maximum
Likelihood Estimate (MLE) of the fit parameter β to find its
value and uncertainty. Since all our models are 1D, performing
the MLE and finding the uncertainty of the fit parameter is
done by scanning through the parameter space and using the
lowest LLH-value as the initial value for iMinuit to properly
minimize the (negative) LLH.

To test whether or not the remaining hypotheses actually
fit the data, we use Kolmogorov-Smirnov as the goodness of
fit test statistics. Since testing the fitted model to the data
it was fitted to would positively bias the p-value [4], we
generate 1000 MC samples for each hypothesis based on the fit
parameter β and compare these MC-generated samples to the
actual data. To generate discrete samples based on the different
hypotheses, we follow Moreno’s [4] method of first using the
Inverse Transformation Method on f2 and then the Hit-and-
Miss Method to generate numbers from f1 and f3.

IV. RESULTS

Performing the likelihood ratio test between the three hy-
potheses on each of the four data sets give us the following
values for each alternative hypothesis:

Bible News Wikipedia Subtitles

LR1 6862.33 33451.35 12135.18 89191.34

LR2 7588.24 18398.98 -12353.52 73115.06

LR3 5238.35 32552.20 7650.96 88869.78

TABLE I. TABLE CONTAINING THE CALCULATED LIKELIHOOD RATIO
VALUES FOR EACH DATA SET AND EACH ALTERNATIVE HYPOTHESIS.

When we compare the values from table I with the 3σ
confidence limits found earlier, we see that there is a case

where we cannot reject H0 compared to H2 at 3σ confidence.
We therefore exclude f2 from the further analysis. For the
hypotheses that passed the hypothesis tests we fit them to each
of the 4 data sets. The graphs for f1 and f3 fitted to the Bible
data sets is shown in figure 3. Similar graphs for the other data
sets can be found in appendix A. From the fits we extract the
values of β as shown in table II.
From these fitted values of β we generate 1000 data points

Bible News Wikipedia Subtitles

β1 1.598± 0.006 1.770± 0.002 1.884± 0.001 1.664± 0.001

β3 1.467± 0.003 1.572± 0.001 1.619± 0.001 1.522± 0.001

TABLE II. TABLE CONTAINING THE FITTED VALUES OF β WITH
CORRESPONDING 1σ UNCERTAINTIES FOR EACH DATA SET AND EACH

ALTERNATIVE HYPOTHESIS. f2(n) USED ON THE WIKIPEDIA DATA SET
WAS REJECTED DURING THE HYPOTHESIS TEST.

for each alternative hypothesis via Monte Carlo and do a
Kolmogorov−Smirnov test to test the goodness of fit of the
alternative hypotheses to the data. The resulting p-values can
be seen in table III. From table III we see that f1(n) seems to
generally fit the data sets the best. f3(n) gives quite bad fits
for all data sets.
We therefore conclude that in almost all cases the 3 alternative
hypotheses were better than the null hypothesis, and that f1(n)
fits the data the best.

Bible News Wikipedia Subtitles

P1 1.15× 10−2 1.62× 10−2 1.24× 10−6 9.07× 10−4

P3 4.26× 10−12 7.34× 10−16 8.39× 10−11 1.91× 10−37

TABLE III. TABLE CONTAINING THE RESULTING P VALUES FROM THE
KOLMOGOROV−SMIRNOV TEST FOR EACH DATA SET AND EACH

ALTERNATIVE HYPOTHESIS.

PART 2: RECURRENT NEURAL NETWORK

I. INTRODUCTION

In addition to the more classical statistical method in Part 1,
we also employ a different and more modern machine learning
approach to the problem of analyzing Danish language; train-
ing a neural network on the largest Danish open text we were
able to find: The Danish Bible.

We trained a specific form of neural network (NN) called
a Recurrent Neural Network (RNN) on the data set, which
consists of 78,165 lines of bible verses (the Old Testament[5]
and the New Testament[6] combined), in total a 4 MB file. We
optimize the RNN training, and in the end we were able to
predict new bible verses and evaluate the performance of the
RNN’s output.

II. NEURAL NETWORK PRINCIPLE

Given a fixed input (e.g. an image), classify it as one of a
fixed number of categories. This is a typical task for a neural
network. This is what is shown in the leftmost part of Fig. 4,
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Fig. 2. Histograms of likelihood ratio values from 10000 pseudo experiments each with 10000 data points sampled from H0. The ratios are between H0 and
(left) f1(n) = 1/(ζ(β, 1)nβ), (middle) f2(n) = (1/n)β−1 − (1/(n+1))β−1 and (right) f3(n) = B(n+1−β, β)/B(2−β, β). The red line is the upper
3σ confidence limit.
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Fig. 3. Plot showing f1(n) and f3(n) fitted to the Bible data set. The fits
include the 5σ confidence interval.

where red is the input, green is the internal state of the neural
network and blue is the output. Compared to the one-to-one
example, consider the case where you want a computer to write
a caption for given image. Or, in our case, where we want to
train a NN to compose bible verses based on a whole book.
In these examples, there are no fixed input or output. This is
where RNNs outpowers vanilla NNs by having many so-called
internal states (green middle boxes in Fig. 4) [11]. The internal
state is affected by earlier inputs – more or less how humans
also think, making choices based on memory. In text prediction
this internal memory is exactly what we are training in the

RNN; to remember the last X characters and decide what the
next character should be based on earlier patterns. In theory, it
would be possible for a RNN to have as many internal states
as we have characters in the training text, however, in practice
there is a limit to this – and after reaching this limit, the RNN
becomes progressively worse[12]. A specific form of RNN are
the so called Long Short Term Memory Networks (LSTM).
They are tailored specifically to store information from only
the latest number of characters, but to keep this information
for a long time. For a further explanation, see [12]. In our
case, LSTM can be seen as a better-working version of RNN
– which itself is an improvement over vanilla NN.

Fig. 4. Difference between vanilla neural network (left) and RNNs (right).
Vanilla neural networks take only a fixed input (red) and generate a fixed
output (blue) based on its internal state (green). RNNs allow for a more flexible
use with many in- and outputs each with a internal state that has memory based
on prevous inputs.

In practice, we make use of Justin Johnson’s excellent
module ”Torch-RNN” which implements a character-based
LSTM [13]. Torch-RNN is a high performance implementation
of LSTM in the light weight scientific computing framework
”torch7”[14]. The real advantage Torch-RNN has, compared
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to other LSTM modules, is a moderately user friendly imple-
mentation of running the computations on the GPU compared
to the CPU. Using CUDA to allow computations on the GPU
strongly decreases the training time. Compared to a Kera’s[15]
implementation based on TensorFlow with only CPU-support,
Torch-RNN was around 7 times faster (4 hours compared to
about 30 hours, training time). We found that using 4 layers
each having 512 internal states (and a dropout rate of 0.5) gave
the best results.

III. RESULTS OF NEURAL NETWORK ANALYSIS

Viewing the output as a function of the number of iterations
gives an impression on how the output of the algorithm
gradually improves. Keep in mind that Torch-RNN is character
based and not word-based, so it does not simply look at
which word combinations often appear next to each other1.
The algorithm therefore has to learn Danish by just looking at
patterns at the character-level. After X iterations it outputs2:

Iteration 100:
æøH go9 ule?

i nn ase rnn r e M de st k g va
ie rl o doæs sl are h m rsnsn s ng

Iteration 200:
(leg de fander han keltune Han Lal sam

o den kker de tad tår Hærer, fæl ot
Eande sem Jås Perteng. or

Iteration 300:
8Ubølte for for var skal den du er mig mevlet
Mudtede på mige Lavtan, der Je sig mig og.
10. ner og deret da føste der den hjimten den

Iteration 500:
9. Se, hver Lingen eder skal en Søn; Jårdet
har han står vidte i og skal de levede til
sig og handne den til hele og det ned blive
de som Adas,

Iteration 1,000:
24. Da de siger ham.
12. Siger er sagde som den og førte i det

med min Tjener Sted, Judas Borge,
bryder mit Vand, stort de brænder.

Iteration 60,000:
2. Så tog Saul det Hus af Assyrerkongen

til dem, hans Sønner skal opbrændes
for Moabs Konge, og Moses så sig der
for at advare dem;

16. og han sagde til Josua: "Er det, som
jeg giver Israeliterne hen som en til
min Trælkvinde, som har have dine Fædre

1This further has the advantage of being able to predict not just text, but
also general code (like C-code or LATEX-code) [11].

2Sampling it with a temperature setting of 0.5

og din Ord laver sin Fædrenehus’s
Brødre, thi Retten er din Tjener.

Initially the algorithm mostly generates random letters.
Around iteration 200 it starts learning some of the short words.
At iteration 300 numbers begin appearing and at iteration 500 it
learns about more advanced punctuation. However, it still does
not really make any syntactical sense. From iteration 1,000 and
forward sentences which makes sense start slowly emerging,
and at iteration 60,000 it becomes difficult to distinguish
between generated text and real bible verses.

To quantify the effectiveness of the RNN, we generate 2,000
characters from iteration 100 to 1,500 in steps of 100 and
calculate the fraction of generated valid words. We use all the
words in the Bible that appear more than 1 time (to account for
some spelling errors in the online public version of the bible)
as a dictionary. This dictionary yields 14,618 distinct Danish
words to compare the generated sentences with. The results
are seen in Fig. 5. We see that after only around 500 iterations
the correctness of the generated sentences is larger than 90%
with a slow asymptotic behaviour. At 60,000 iterations the
correctness is (99.3± 0.3)%.

These numbers show the great strength of LSTM RNNs;
that they are able to correctly generate new bible verses based
on a single text file as input. After only about 1000 iterations
the words starts to make sense, although more iterations are
needed to correctly imitate Danish syntax. We also found that
using the GPU significantly reduced training time of the RNN
by up to a factor of 7.
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Fig. 5. Fraction of correctly generated words of our neural network as a
function of iteration number. For illustration purposes, the shown uncertainties
are 2σ. The neural network is a RNN using LSTM trained on the Danish Bible.

PART 3: CONCLUSION

The project consisted of two parts. The first focused on
a quantitative analysis of the word frequency of the Danish
language, testing different versions of Ziph’s law. The most
compatible formulation of Ziph’s law was found also to be
the most simple model, f1(n) ∝ 1/nβ , which consistently
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yielded good results for the different danish texts. Further
work on this part of the project could include examining
entirely different languages with Ziph’s law.

The second part contained a quantitative and qualitative
analysis of text generated by a recurrent neural network, Torch-
RNN, training on the Danish Bible. After 60,000 iterations of
this algorithm, (99.3±0.3)% of the words generated was actual
words present in the Bible. Using the GPU for the calculations
decreased the iteration time by a factor of 7. Further work on
this part of the project could include training on different (more
modern) Danish texts.
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APPENDIX A
PLOTS

It is absolutely correct to include the date 
when citing websites. Nice job. 

- Fascinating topic that was excellently well executed and explained. 
- very few grammatical errors, although any errors are somewhat ironic 
given the topic of your project
- including the word count frequency and predictive text NN could 
almost be considered two separate projects, so the amount of work was 
impressive.
- my minor criticisms are a lack of discussion about the neg. data entry 
in table 1, and a limited explanation of the LTSM NN given that you had 
at least 0.5 pages of text left blank. But, these are truly minor.
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Fig. 6. Plot showing f1(n), f2(n) and f3(n) fitted to the News data sets. The fits include 5σ error bars, but these are too small to be discerned.
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Fig. 7. Plot showing f1(n) and f3(n) fitted to the Wikipedia data sets. The fits include 5σ error bars, but these are too small to be discerned.
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Fig. 8. Plot showing f1(n) and f3(n) fitted to the OpenSubtitles data sets. The fits include 5σ error bars, but these are too small to be discerned.


