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• Some things are complicated, too complicated for simple 
analytic tools. Both for physics processes as well as 
instrumental responses ( noise, efficiency, thresholds, jitter, 
etc.)

Monte Carlo (Simulation)
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• ~1km3 of instrumented ice 

• Uses ~5k optical sensors across 86 vertical strings to detect 
Cherenkov radiation 

• Deployed 1.5 - 2.5km below the surface

IceCube
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IceCube Optical Sensor
~300 Scientists 

12 Countries + Antarctica
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Monte Carlo - Physics Processes
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(animation)
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• The previous movie is the simulation of a high energy muon moving 
through the IceCube detector at the South Pole. 

• As the muon moves through ice, photons are emitted. The 
Cherenkov photons are individually simulated as the thin strands 
(color denotes time since being emitted) as they scatter and then 
are ultimately absorbed. 

• While the behavior that describes photon scatter and absorption 
may be simple, or complicated, it can be broken down at each 
photon ‘step’ 

• Does the photon get absorbed yes/no? 

• If no absorption, then does it scatter yes/no? 

• If it does scatter, how much between 0-360°? 

• Move one step and repeat 

• This is near-impossible without computers 

Monte Carlo - Physics Processes
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If we can give a probability of 
each of these outcomes, then 

we can break the complex 
process into manageable pieces 
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• Even with a purely analytic treatment of the physics, 
detectors/telescopes/experiments/etc. are often 
complicated and extremely sensitive

Monte Carlo - Instrument/Detector
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Monte Carlo - Instrument/Detector
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1 km

1 km

(animation)
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• The previous movie is 10 ms of simulated data including 
noise and cosmic ray muons (green lines)  

• The background rate (cosmic ray muons) is ~2200 Hz, 
whereas the neutrino signal for some analyses is 1 event 
every 1-3 months 

• Lots of Monte Carlo data makes sure you can optimize 
your analysis to keep signal and remove background, and 
has many, many more benefits 

• It’s all possible because of (pseudo) random number 
generators and computers

Monte Carlo - Instrument/Detector
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• A pillar of Monte Carlos and many analytic tools is the use 
of a generator that can produce ‘random’ values, most often 
in the range of 0 to 1 

• Random in a linear fashion from 0-1 is nice because: 
• Probabilities go from 0-1 

• It is usually easy to map/transform linear in 0-1 to other ranges or 
functions. Note that zero can be problematic for some functions: 1/x, 
natural log (ln), etc. 

• Many default random number generators produce values that are 
linear in 0-1, e.g. numpy.random.uniform() 

• There are two main ways to apply random numbers for 
Monte Carlo simulation and probability distribution function 
sampling: Transformation method and Accept-Reject

Random Numbers
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Transformation method
We have uniformly distributed random numbers r. We want random numbers x 

according to some distribution.

We want to try to find a function x(r), such that g(r) (uniformly distributed numbers)
will be transformed into the desired distribution f(x).

It turns out, that this is only possible, if one can (in this order):
 Integrate f(x)
 Invert F(x)

As this is rare, this method can not often be used by itself. However, in combination 
with the Hit-and-Miss method, it can pretty much solve all problems.
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*T. Petersen, Applied Statistics
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Transformation method

So the “recipe” can be summarised as follows:
• Ensure that the PDF is normalised!
• Integrate f(x) to get F(x) with the definite integral: 
• Invert F(x)
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F (x) =

Z x

�1
f(x0)dx0

Now you can generate random 
numbers, x, according to f(x), 

by choosing x = F-1(u), where u 
is a random uniform number.

*T. Petersen, Applied Statistics
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• Transformation method is efficient when possible, but it is 
rarely practical and will NOT be in any problem set or 
exam for this course. 

• Instead we focus on the Accept-Reject method, which is 
straightforward and many of the inherent inefficiencies are 
rarely noticed because of modern computer power

In Practice
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• For a probability distribution function that can nicely fit in a 
easily to integrate width/area/volume/etc. it is possible to 
generate a PDF-based random number generator

Acceptance-Rejection Method
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• Get your favorite random number generator (and I know 
that you all have favorites) and start randomly sampling 

• Making plots is a good first step for any analysis. Try 
different plotting styles to literally see if you notice any 
regularity from your tested random number generator 
• Human eye/brain is good at pattern recognition amidst ‘noise’ 

• See if there’s a sequence to the generator 

• Is there a ‘seed’ option? If so, does that change anything? 

• Time the random number generator 
• Does it take 10 times longer run if it produces 10 times more random 

numbers?

Random Number Generators

14
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Accept-Reject method 
(Von Neumann method)
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If the PDF we wish to sample from is bounded both in x and y, then we can use the
“Accept-Reject” method to select random numbers from it, as follows:
• Pick x and y uniformly within the range of the PDF.
• If y is below PDF(x), then accept x.

The main advantage of this method is its simplicity, and given modern computers,
one does not care much about efficiency. However, it requires boundaries!

*T. Petersen, Applied Statistics
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• Random numbers from generators are as accurate as the 
method, e.g. Mersenne twister, as well as the 
computational precision of the variable(s) 

• Variable types related to int, float, and double have a 
characteristic precision, 8-bit, 32-bit, etc. 

• For example, the float precision in some python versions is 
53-bits, and therefore there is intrinsic rounding for 
precision at the scale of 1/253

Precision
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In [6]: 0.1 + 0.2 
Out[6]: 0.30000000000000004

*ipython 4.0.1
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• Okay, so now you have a random number generator, let’s 
put it to use 

• You have no clue about the value of π, but you want to 
calculate the area of a circle with only two things: 
• x2+y2=r2 

• random number generator 

• The core concept of a random number generator is that 
they are mostly random, but repeatable 

• Show visualization, i.e. plot, of your method for calculating 
the area of a circle

Classic & Simple Monte Carlo Usage
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• This is the classic illustration. Can you show your method in 
a different format that is understandable?

My Circle Area Visualization

18

X
0 1 2 3 4 5

Y

0

1

2

3

4

5

Area of Circle Monte Carlo

Accept
Reject



D. Jason Koskinen - Advanced Methods in Applied Statistics

• Do we really want a ‘random’ generator to be random? 

• Using the previous code for estimating the area of a circle, 
plot the resulting area value for 1000 separate tests using 
100 throws per test for a radius of 5.2 meters 
• Does your previous code show actual randomness? How would you 

know? 

• Make histograms of the frequency of the area for the same 1000 
separate trials, i.e. not 3 separate histograms of 3 different 1000 
trials 
• Using bin widths of 3 m2, 1 m2 , and 0.1 m2 

• Are there gaps w/ no entries for certain values of the area? Should there be?

Random Number Generator

19
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• I made 1,000 separate Monte Carlo trials, each having 100 
random number generator throws to calculate the area of a 
circle with radius of 5.2 m

Dissecting a Plot
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• Using your Monte Carlo and the circle equation x2+y2=r2  

find out the value of π knowing that the area is πr2  
• After 10 successive ‘throws’ of your random number generator you 

have an estimate of the circle area. A bad estimate, but an estimate 
nonetheless. Using that estimate of the area, and knowing the radius 
(r=5.2), you can estimate π. 

• Repeat the estimation of π after 10 throws, 100 throws, 1000 throws, 
10000 throws, and 100000 throws 

• Plot. On the y-axis have the estimate of π and on the x-axis have the 
number of throws. 

Calculate the Precision of Pi

21
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• Repeat the estimation of π after 10 throws, 100 throws, 1000 throws, 
10000 throws, and 100000 throws

Calculate the Precision of Pi (1)
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• Repeat the estimation of π for at least 100 different sampling points 
between 1-10000

Calculate the Precision of Pi (2)
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• On Tuesday I talked briefly about the Central Limit 
Theorem, i.e. for a large number of measurements of 
continuous variables the outcome approaches a gaussian 
distribution.  

• Use your new found Monte Carlo simulation and estimates 
of π, see if the CLT holds for your estimation method and 
random number generator choice. 
• If you use 100 throws to estimate π repeat it tens, hundreds, 

thousands, etc. of times is the ensuing collect of estimates a 
gaussian distribution?

Pi and the Central Limit Theorem

24
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• Get your favorite random number generator and figure out 
when it starts becoming non-random or predictive 
• You can write your own, or use some package (numpy, R, ROOT, 

javascript online, actually roll dice or repeatedly flip 53 coins and 
convert to binary, etc…) 

• Sample enough times and in a specific range to show that the 
random number generator is not actually random 

• This can be either by method, i.e. values start to repeat after some 
amount of iterations, or because the computer variable precision you 
give it is bad, or because the method internally uses finite precision 
variables 

• The goal is to know the limitations of at least one random 
number generator you often use, or expect to use

Exercise

25
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Break 
Class restarts at 13:00

26
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• The following slides are included for an understanding of 
the Least Squares method(s). They will not be covered as a 
lecture,  and the least squares method will not be part of 
any problem sets nor will there be a question on the exam 

• After Tuesday, I though it would be best for the class to 
have time to work on your code as well as the first 
assignment 

Note

28
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• In today’s lecture: 

• Introduction 

• Linear Least Squares Fit 

• Least Squares method estimate of variance 

• Non-linear Least Squares  

• Least Squares as goodness-of-fit statistic 

• Least Squares on binned data 

• A lot, lot more math and analytic coverage than usual in the following slides. 
Should be used as reference material, but focus on using your least squares 
minimization routines.

Method of Least Squares

29

Material from D. Grant derived entirely from lectures by A. Bellerive, G. Cowan, and D. Karlen 
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• Introduction 

• Most frequently used fitting method, but has no general optimal properties 
that would make that the case. 

• When the parameter dependence is linear, the method produces unbiased 
estimators of minimum variance. 

• The method is applied as follows: 

• for observation points (x) experimental values are measured (y).  The true 
functional form is defined by L parameters: 

• To find parameter estimates, θ, we minimize:

Method of Least Squares

30

fi = fi(✓1, ..., ✓L)

weight expressing accuracy of y

X2 =
X

i

wi(yi � fi)
2
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• Introduction 

• The method is applied as follows (cont.): 

• In the case of constant accuracy, all w = 1. 

• If the accuracy for y is given by       then 

• If the observations are correlated, then the minimization function 
becomes: 

• where the values for independent variable(s) (generally x) are assumed to 
have be known precisely, i.e. no uncertainties.

Method of Least Squares

�i wi = 1/�2
i

X2 =
NX

i=1

NX

j=1

(yi � fi)V �1
ij (yj � fj) Vij is the covariance matrix

31
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• Introduction 

• The method is applied as follows (cont.): 

• In many cases the measured value (y) can be regarded as a Gaussian 
random variable centered about the true value, as expected from the 
Central Limit Theorem as long as the total error is the sum of a large 
number of small contributions.   

• For a set of N independent Gaussian random variables (yi) of unknown 
mean (λi) and different, but known, variance (σi2) then the joint  PDF can 
be written:

Method of Least Squares

32

g(~y;~�,~�2) =
NY

i=1

1p
2⇡�i

e�
1
2 (

yi��i
�i

)2
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• The method is applied as follows 
(cont.): 

• Again, the measurements 
are related to x, which is 
known precisely.  We can 
write the true value in terms 
of a function of x with 
unknown parameters θ: 

• The goal is to estimate the 
parameters (θ) with the 
least squares method; a 
simple evaluation of the 
goodness of fit of the 
hypothesized function 
above.

Method of Least Squares

33

� = �(x; ~✓)
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• Introduction 

• The method is applied as follows (cont.): 

• The likelihood function is given by: 

• which corresponds to the log-likelihood function:

Method of Least Squares
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L(~✓) = L(x; ~✓) =
NY

i=1

1p
2⇡�i

e�
1
2 (

yi��i(x;~✓)
�i

)2

lnL(~✓) = �1
2
n ln 2⇡ + ln(

NY

i=1

��1
i )� 1

2

NX

i=1

(
yi � �i(x; ~✓)

�i
)2

lnL(~✓) = const� 1
2

NX

i=1

(
yi � �(xi; ~✓)

�i
)2

�2 lnL(~✓) =
NX

i=1

(
yi � �(xi; ~✓)
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)2 + const
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• Introduction 

• The method is applied as follows (cont.): 

• One may maximize lnL, or minimize: 

• The errors on the estimated parameters are obtained by evaluating the 
corresponding one standard deviation departure from the least-squares 
estimate: 

• Thus, if the measurements are Gaussian distributed, then the least 
square method can be equivalent to the maximum likelihood method.  
Further, the observables will be linear functions of the parameters and 
follow a chi-square distribution.  

Method of Least Squares
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�2(~✓) ⌘
NX

i=1

(
yi � �(xi; ~✓)

�i
)2

�2(~✓) = �2 lnL(~✓) + const�2(~✓) = �2(~̃✓) + 1 since
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• Linear LS Fit 

• If the observables are linear functions of the unknown parameters and the 
weights are independent of the parameters, then the LS method has an 
exact solution that can be written in a closed form.   

• Consider  

• the a(x) terms are any linearly independent function of x such that λ is linear 
in the parameters θ.  The a(x) are generally not linear in x, but are linearly 
independent of each other.   

• In this case, an analytic solution for the estimators and their variances exists. 
The estimators will be unbiased from the minimum variance bound condition 
regardless of the number of measurements and the PDF of the individual 
measurements.

Method of Least Squares
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�(x; ~✓) =
NX

j=1

aj(x)✓j
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• LS Fit for a polynomial 

• As a hypothesis for              , 
you might want to use a 
polynomial of order m, in the 
case of m+1 parameters, e.g. 

• This is a special case of the 
linear LS method with linearly 
independent weights: 

• Thus, just as before, 

Method of Least Squares
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�(x; ~✓)

�(x; ~✓) =
mX

j=0

xj✓j

aj(x) = xj

�2 = (~y �A~✓)T V �1
ij (~y �A~✓)
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• LS Fit for a polynomial 
• The illustration to the right is for 

different polynomial fits which 
are possible for least squares, 
including a flat constant, i.e. 0th 
order polynomial 

• With the following data, test a 
similar least squares fit for the 
points defined by: x = (0.0, 1.0, 
2.0, 3.0,  4.0,  5.0) and y = (0.0, 
0.8, 0.9, 0.1, -0.8, -1.0) at 
different polynomial orders 

• Similar to the illustration, 
calculate the chi-square 
assuming each point has a 
uncertainty in y of ±0.5

Method of Least Squares

38

*note the x and y data 
in the text is not the 

same as what is shown 
in the plot
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• Using your random number generator, sample from a 
gaussian distribution of your own choosing, i.e. width and 
mean, for n=10, 100, 1000, and 10000 throws and fit each 
with a 2nd and 3rd order polynomial least squares fit. Use 
histograms. 
• Assume any negative predictions from the resulting polynomial fit 

are zero.  

• Calculate the chi-square for each combination of trials and 
polynomial least squares fits 

• The uncertainty is related to the expected poisson fluctuations from 
your samples of the random number generator. 

• Plot the resultant fits and see what happens for higher order 
polynomial fits, e.g. order 5, 7, 8, 12, whatever, etc… as the number 
of data points (random number generator throws) increases

Least Squares Examination

39
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• From the resultant fits for higher order polynomial fits, e.g. 
order 5, 7, 8, 12, whatever, etc… as the number of data 
points (random number generator throws) increases, 
calculate the chi-square using the uncertainty (or weight) as 
the expected poisson fluctuation 
• Where do the polynomial fits give a good ‘fit’ to a gaussian, even 

though a gaussian distribution and polynomial are not the same? 

• How does the agreement change as a function of polynomial order 
or throws from the random number generator?

Least Squares Examination (cont.)

40
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Extra

41
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• Non-Linear LS Fit 

• Need a numerical method to evaluate the estimators and their covariance 
matrix.   ROOT and other packages provides this capability to fit any type 
of function, including that provided by a user defined routine. 

• Examples of user routine for a chi-square numerical minimization: 

• Polynomial of order m: 

• Gaussian:

Examples of Least Squares Routines

42

y(t) = x0 + x1t + x2t
2 + ... + xmtm

y(t) = x1e
� 1

2

“
t�x2

x3

”2

x1 = amplitude

x2 = mean

x3 = standard deviation
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• Non-Linear LS Fit 

• Examples of user routine for a chi-square numerical minimization: 

• Exponential: 

• Trigonometric: 

• Damped Oscillator

Examples of Least Squares Routines

43

y(t) = x1e
�x2t

y(t) = x1sin(x2t) y(t) = x1cos(x2t)

y(t) = x1sin(x2t + x3) y(t) = x1cos(x2t + x3)

y(t) = x1e
�x2tcos(x3t + x4)
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• Non-Linear LS Fit 

• Examples of user routine for a chi-square numerical minimization: 

• Breit-Wigner: 

• We of course want to find the relation between true values, according to 
some hypothesis, and measured quantities, y, at known observations with no 
errors, x. e.g.:

Examples of Least Squares Routines
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y(t) =
2

⇡x2

x3x2
2

4(t� x1)2 + x2
2

x3 = amplitude
x1 = mean

x2 = width

fj(~y;�) = yj � hj
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• Non-Linear LS Fit 

• We need to find the minimum function: 

• The convergence of a numerical (iterative) procedure will depend on if we 
are in an area of the phase space where the chi-square function is similar to a 
quadratic form.  That is to say, the non-linear case first approximation is the 
starting point for the numerical procedure.  For this simple algorithm to work 
we must be near the absolute minimum. 

• We expand the function around a set of first approximations for the (r) 
unknowns or parameters: 

Method of Least Squares
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�2 = (~y � ~h(x))T Gy(~y � ~h(x))

fj = yj � hj ! �

fj(x)true = fj(x0) + (
@fi

@xi
) ~x0(xi � xi0) + ... = 0

estimates
rX

i=1
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• Non-Linear LS Fit 

• We expand this about  

• Which gives us: 

• elements of A: 

• and G is the inverse variance matrix.  

Method of Least Squares
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• Non-Linear LS Fit 

• Note that the second derivative must of course be positive at the minimum 
when the chi-square is of quadratic form: 

• A step beyond the simple iterative method, known as step-size reduction, 
applies the fact that on each side of the minimum the first derivative 
changes sign and the second derivative is positive.

Method of Least Squares

47

1
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• LS Fit as a goodness-of-fit 

• The value of the chi-square minimum reflects the agreement between 
data and hypothesis and can thus be used as a goodness-of-fit test 
statistic: 

• where our hypothesized function form is given by λ. 

• If the hypothesis is correct, then the test statistic, t, follows the chi-square 
pdf: 

• where nd is the number of data points - number of fitted parameters.

Method of Least Squares

48

�2
min =

NX

i=1

(yi � �(xi; ✓̂))2

�2
i

f(t;nd) =
1

2nd/2�(nd/2)
tnd/2�1e�t/2
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• LS Fit as a goodness-of-fit 

• The chi-square pdf has an expectation value equal to the number of 
degrees of freedom such that if the minimum chi-square is approximately 
the number of degrees of freedom then the fit is considered “good.” 

• We can find the p-value, here the probability of obtaining a chi-square 
minimum as large as the one measured, or higher, if the hypothesis is 
correct: 

• From the polynomial fit example: 

• 2 parameter fit:   

• 1 parameter fit:

Method of Least Squares

49

p =
Z 1

�2
min

f(t;nd)dt

�2
min = 3.99 nd = 5� 2 = 3 p = 0.263

�2
min = 45.5 nd = 5� 1 = 4 p = 3.1⇥ 10�9

*results from illustration in slide 36
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• LS Fit as a goodness-of-fit vs. statistical errors 

• It is important to note that a small statistical error does not imply a good 
fit, nor does a good fit imply small statistical errors.   

• The curvature of the chi-square near its minimum is related to the 
statistical errors 

• The value of the chi-square minimum is the goodness-of-fit. 

• For horizontal line fit, move the data points (transform), keeping the 
errors on the points the same.

Method of Least Squares

50

Variance is same as previously, so the 
chi-square minimum is now “good”
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• LS Fit as a goodness-of-fit vs. statistical errors 

• The variance of the estimator (statistical error) tells us that if the 
experiment were repeated many times, the width of the distribution of 
the estimates, but not if the hypothesis, is correct. 

• The p-value tells us that if the hypothesis is correct, and the experiment 
repeated many times, what fraction of those will give equal or worse 
agreement between data and hypothesis according to the chi-square 
minimum test statistic. 

• Thus, a low p-value may indicate the hypothesis is wrong, due to 
systematic error.

Method of Least Squares
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• LS method with binned data 

• If the data is split into N 
bins, with bin i containing 
ni entries, there is a 
probability for an event to 
populate, pi, that bin.    
Our hypothesized pdf is: 

• The expected number of 
events in each bin is given 
by:

Method of Least Squares
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f(x; ~✓)

n =
NX

i=1

ni

�i(~✓) = n

Z xmax
i

xmin
i

f(x; ~✓)dx = npi(~✓)
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• LS method with binned data 

• Now for the fit we minimize 

• where our variances are not known a priori.   We treat the y terms as 
Poisson random variables and, in place of the true variance, take either: 

• Note that the modified least squares is sometimes easier to compute, but 
the chi-square minimum statistic no longer follows the chi-square pdf if 
some of the bins have few or no entries.  
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• LS method with binned data 

• We lose a degree of freedom because of the normalization condition: 

• such that the chi-square minimum statistic will follow: 

• assuming the model consists of L independent parameters. 

• It is NOT correct to fit for the normalization, e.g. 

• The estimator for n,    ,  will be bad.  
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• LS method with binned data 

• Normalization example:   n=400 entries in N=20 bins. 

• The expected chi-square minimum is near N-m which means the relative 
error in the estimated normalization is large when N is large and n is 
small.    

• Ultimately get n directly from the data for LS method, or use a maximum 
likelihood.
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• LS method with binned data 

• Choices of binning is critical.  Two common choices are: 

• equal width 

• equal probability 

• It is important not to choose the binning in order to make the chi-square 
minimum as small as possible!  Doing so would cause the statistic to no 
longer follow the chi-square distribution.   

• It is necessary to have several entries (>5) in each bin so that the statistic 
approximates a standard normal distribution.  
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• Combining measurements with LS method 

• The LS method may be used to obtain the weighted average of N 
measurements of the true value λ. 

• Given measurements, y, the variance, assumed to be known, is: 

• For uncorrelated measurements: 

• and, as usual, we solve for the first derivative equated to zero.
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• Combining measurements with LS method 

• If the covariance between measurements is                          , then 
minimize: 

• The least square estimate has zero bias and minimum variance according 
to the Gauss-Markov theorem.
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• Using LS with biased data samples 

• It may happen that some data samples will not reflect the true distribution due 
to, for instance, unequal detection efficiency for each event.   To deal with this it 
is best to modify the theoretical model to account for the detection efficiency.  
In doing so, no modification of the least squares minimization is necessary.  If 
that is not possible  you can either 

• Modify the events in a bin, ni:   If the detection efficiency for event j in bin i 
is: 

• Modify  

• Both work well when the variation of the weights is small, otherwise the 
uncertainty of the estimates are not well defined.  
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