Markus Ahlers
markus.ahlers@nbi.ku.dk

Niels Bohr International Academy

March 3, 2020

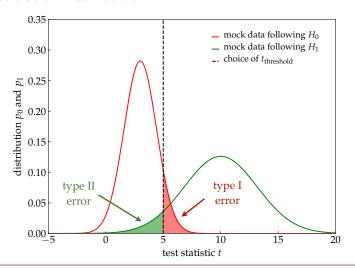
Typical problem in physics and astronomy:

You have collected data with your experiment or observatory and want to test a theory (signal hypothesis H_1)?

- → How can you judge if the hypothesis is correct/wrong?
- \rightarrow How does the alternative hypothesis (null hypothesis H_0) look like?
- → How confident can you be that your conclusions are correct?
- In most cases there is a chance that your decision is wrong:
 - \checkmark You **decided** that H_1 is correct, but it is actually wrong? **(type I error)**
 - \times You decided that H_1 is wrong, but it is actually correct? (type II error)

- A statistical hypothesis test is based on a quantity called test statistic that allows to quantify the degree of confidence that your decision was right or wrong.
- A useful test statistic:
 - is **sensitive** to the signal hypothesis H_1 (that's a must!)
 - is efficiently calculable (e.g. fast calculation on your computer)
 - has a well-known behaviour for data following the null hypothesis ${\cal H}_0$ (more on this later)
- If we apply the statistical test to the observed data we can quantify the Type I ("false positive") and Type II ("false negative") errors by comparing to the **expected** test statistic distribution, p_0 and p_1 , of data following background (H_0) and signal (H_1) hypothesis, respectively.

Test Statistic Distribution



In a hypothesis test we have to choose a **critical** *t*-value to either reject or accept the hypothesis.

Test Statistic Distribution

significance (α):
 Probability that background would have created outcome with same t or larger (type I error):

$$\alpha = \int_{t_{\mathrm{obs}}}^{\infty} \mathrm{d}t \, p_0(t) = \text{``p-value''}$$

- Note: It is a convention that t increases for a more "signal-like" outcome. If not, just define a new test statistic t' = -t.
- power of test (1β) : Probability that signal would have created outcome with same t or less (type II error):

$$\beta = \int_{-\infty}^{t_{\text{obs}}} \mathrm{d}t \, p_1(t)$$

- \rightarrow A good statistical test will have good "separation" of p_0 and p_1 to allow a minimize type I/II errors. Separation from background allows to quantify **significance** of event excesses:
 - discovery (in particle physics) :

$$\alpha \simeq 5.7 \times 10^{-7} ("5\sigma")$$

• evidence (in particle physics) :

$$\alpha \simeq 2.7 \times 10^{-4} ("3\sigma")$$

- Often, we want to estimate the **performance** of a statistical test prior to a measurement by simulations. We can determine this by tuning the signal strength, *e.g.* the IceCube experiment uses:
 - discovery potential:

$$\alpha \simeq 5.7 \times 10^{-7} (5\sigma)$$
 and $\beta = 0.5$

• 90% sensitivity level:

$$\alpha = 0.5$$
 and $\beta = 0.1$

Today's Program

- Today, we will explore various examples of hypothesis tests and test statistics:
- Maximum likelihood ratio test
 - This is the most powerful test statistic (Neyman-Pearson theorem).
 - Allows to quantify background distributions p_0 (Wilks theorem).
 - We will study the applicability of Wilks theorem by a numerical example (exercise 1).
 - Discussion of trials factor corrections.
- Kolmogorov-Smirnov test
 - We will introduce this test by the cumulative auto-correlation function of event distributions on a sphere.
 - This test allows to study hidden structure in event distributions, e.g. deviations from an isotropic distribution.
 - We will generate mock data following isotropic and simple anisotropic distributions and study the performance of the test (exercise 2).

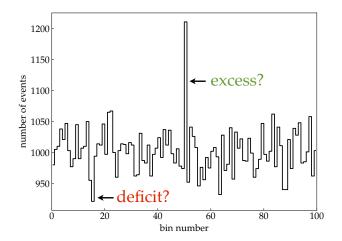
Today's Program (cont.)

- Angular power spectrum (optional, depending on time)
 - The power spectrum C_ℓ can be used as a test statistic that allows to study distributions of data (large number of events, temperature flucuations (CMB),...) on a sphere.
 - Brief introduction of spherical harmonics $Y_{\ell m}$ as basis functions on a sphere (exercise 3).
 - Introduction of the two-point angular correlation function and its relation to the power spectrum.
 - Introduction of the power spectrum.
 - Extraction of power spectra from mock data and background (exercise 4).

Part I Maximum Likelihood Ratio

Recap: Maximum Likelihood Ratio

- Consider data ($N_{
 m tot}$ "events") distributed in $N_{
 m bins}$ bins.
- Question: Is there an excess or deficit in the data?



Recap: Maximum Likelihood Ratio

• Likelihood for data vector \mathbf{x} and parameter vector $\boldsymbol{\mu}$:

$$\mathcal{L}(\pmb{\mu}|\mathbf{x}) = \prod_{i=1}^{N_{ ext{bins}}} rac{\mu_i^{x_i}}{x_i!} e^{-\mu_i}$$
Poisson distributions

Null hypothesis ("no signal")

$$\mu_i = \mu_{\rm bg} = {\rm const}$$

• Signal hypothesis ("signal (excess or deficit) in bin 1")

$$\mu_i = \begin{cases} \mu_{\text{sig}} + \mu_{\text{bg}}^* & i = 1\\ \mu_{\text{bg}}^* & 2 \le i \le N_{\text{bins}} \end{cases}$$

! Important note: $\mu_{\rm bg}^* \neq \mu_{\rm bg}$

Maximum of Null Hypothesis

for convenience : likelihood → log-likelihood (LLH)

$$\ln \mathcal{L}(\mu|\mathbf{x}) = \sum_{i=1}^{N_{\mathrm{bins}}} (x_i \ln \mu_i - \mu_i) + \underbrace{\mathrm{const}}_{\mathrm{independent of } \mu}$$

- In general, maximum of LH (or LLH) can be derived numerically.
 This example is easy enough to solve analytically:
- maximum LH value determined by:

$$\frac{d \ln \mathcal{L}}{d \mu_{\text{bg}}} = 0 = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{x_i}{\mu_{\text{bg}}} - 1 \right)$$

• maximum $\hat{\mu}_{bg}$ obeys:

$$\hat{\mu}_{\rm bg} = \frac{N_{\rm tot}}{N_{\rm bins}}$$

Maximum of Signal Hypothesis

 For the signal hypothesis we have to find the maximum w.r.t. signal and background strength:

$$\frac{d \ln \mathcal{L}}{d \mu_{\rm bg}^*} = 0 \quad \text{and} \quad \frac{d \ln \mathcal{L}}{d \mu_{\rm sig}} = 0$$

- Signal term μ_{sig} is (by construction) only present in bin 1.
- maximum $\{\hat{\mu}_{bg}^*, \hat{\mu}_{sig}\}$ obeys:

$$\hat{\mu}_{\text{bg}}^* = \frac{N_{\text{tot}} - x_1}{N_{\text{bins}} - 1}$$

$$\hat{\mu}_{\text{sig}} = x_1 - \hat{\mu}_{\text{bg}}^* = \frac{x_1 N_{\text{bins}} - N_{\text{tot}}}{N_{\text{bins}} - 1}$$

Maximum LH Ratio

• test statistic λ is defined as maximum likelihood ratio:

$$\lambda(\mathbf{x}) = -2 \ln \frac{\mathcal{L}(\mathbf{x}|\hat{\mu}_{bg}, 0)}{\mathcal{L}(\mathbf{x}|\hat{\mu}_{bg}^*, \hat{\mu}_{sig})}$$

• after some algebra using the solutions of $\hat{\mu}_{
m bg}$, $\hat{\mu}_{
m bg}^*$, and $\hat{\mu}_{
m sig}$:

$$\lambda(\mathbf{x}) = 2x_1 \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}}x_1\right) + 2(N_{\text{tot}} - x_1) \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}}\frac{N_{\text{tot}} - x_1}{N_{\text{bins}} - 1}\right) \quad (1)$$

- Note: The first (or second) term in Eq.(1) vanishes in the special case $x_1 = 0$ (or $N_{\text{tot}} x_1 = 0$).
- bonus exercise: Derive $\hat{\mu}_{bg}$, $\hat{\mu}_{bg}^*$, $\hat{\mu}_{sig}$, and Eq.(1).
- → exercise 1 : Let's explore the behaviour of Eq.(1).

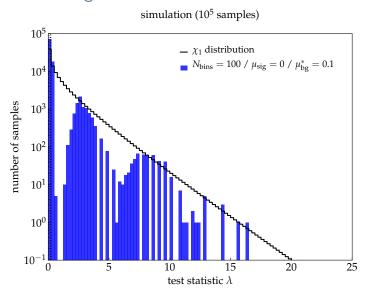
Exercise 1

- Generate mock data assuming $N_{\rm bins} = 100$ bins.
- Consider two categories:
 - three background cases: choose $\mu_{\rm sig}=0$ and $\mu_{\rm bg}=0.1$, 10, or 1000.
 - two signal cases: choose $\mu_{\mathrm{bg}}^*=1000$ and signal in first bin (i=1) with $\mu_{\mathrm{sig}}=100$ and 200.
- For each case generate many (10⁵) samples $\mathbf{x} = \{x_1, \dots, x_{N_{\mathrm{bins}}}\}$ of mock data and calculate $\lambda(x_1, N_{\mathrm{tot}} = \sum_{i=1}^{N_{\mathrm{bins}}} x_i)$:

$$\lambda = 2x_1 \ln \left(\frac{N_{bins}}{N_{tot}} x_1 \right) + 2(N_{tot} - x_1) \ln \left(\frac{N_{bins}}{N_{tot}} \frac{N_{tot} - x_1}{N_{bins} - 1} \right)$$

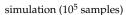
• Make histograms of the λ values to estimate the null and signal distributions.

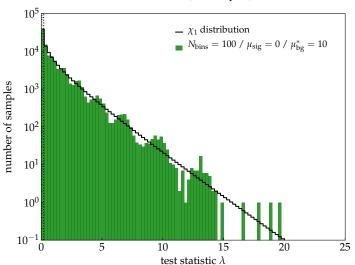
Exercise 1: Background Cases



for python code see : maxLH_produce.py & maxLH_show.py

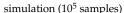
Exercise 1: Background Cases

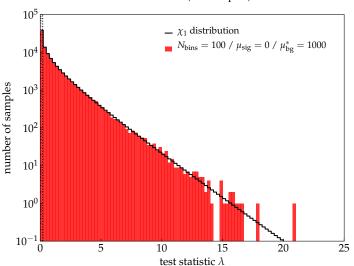




for python code see : maxLH_produce.py & maxLH_show.py

Exercise 1: Background Cases





for python code see : maxLH_produce.py & maxLH_show.py

Wilks Theorem (1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

By S. S. Wilks

(...)

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\tilde{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_i = \theta_{0i}$, i = m + 1, m + 2, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with h - m degrees of freedom.

bonus exercise: Try to find this publication online.

Wilks Theorem

Prerequisites:

- Let \mathbf{x} be data that follows a probability function $f(\mathbf{x}|\theta_1,\ldots,\theta_n)$.
- The corresponding likelihood function $\mathcal{L}(\theta_1, \dots, \theta_n | \mathbf{x})$ has a maximum at $\hat{\theta}_1, \dots, \hat{\theta}_n$.
- Let the true hypothesis have $\theta_1 = \theta_1^{(0)}, \ldots, \theta_m = \theta_m^{(0)}$ with m < n.
- The *constrained* likelihood function $\mathcal{L}(\theta_1^{(0)}, \dots, \theta_m^{(0)}, \theta_{m+1}, \dots, \theta_n | \mathbf{x})$ has a maximum at $\hat{\theta}_{m+1}, \dots, \hat{\theta}_n$.

Wilks theorem:

For a large number of samples x, the distribution of the test statistic

$$-2\ln\frac{\mathcal{L}(\theta_1^{(0)},\ldots,\theta_m^{(0)},\hat{\theta}_{m+1},\ldots,\hat{\theta}_n|\mathbf{x})}{\mathcal{L}(\hat{\theta}_1,\ldots,\hat{\theta}_n|\mathbf{x})}$$

approaches a χ^2_k distribution with k=n-m in the limit of a large number of events, $N_{\rm tot}$.

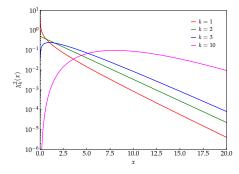
χ_k^2 Distributions

• Definition of χ_k^2 distributions:

$$\chi_k^2(x) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$$

our example:

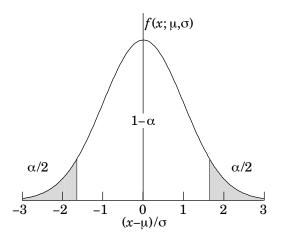
$$k = 2(\hat{\mu}_{bg}^*, \, \hat{\mu}_{sig}) - 1(\hat{\mu}_{bg}) = 1$$



 $\rightarrow \chi_k^2(x)$ is related to the integrated probability of a **k-variate normal distribution** (s: units of "sigma"):

$$\int_{s^2} dx \chi_k^2(x) = \int_{\mathbf{r}^T \mathbf{\Sigma}^{-1} \mathbf{r} > s^2} dr_1 \dots dr_k \frac{1}{\sqrt{(2\pi)^k det \mathbf{\Sigma}}} \exp(-\mathbf{r}^T \mathbf{\Sigma}^{-1} \mathbf{r} / 2)$$

Example: χ_1^2 Distributions



$$\alpha = \int_{s^2} \mathrm{d}x \chi_1^2(x) = \int_{r^2/\sigma^2 > s^2} \mathrm{d}r \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad (\Sigma \to \sigma^2)$$

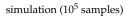
Quick Example

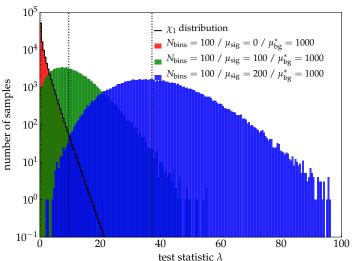
• For large $N_{\rm tot}$ we can apply Wilks theorem and assume that the background distribution follows a χ_1^2 distribution.

$$p - \text{value} = \int_{\lambda_{\text{obs}}}^{\infty} dx \chi_k^2(x) = 1 - \text{erf}(\sqrt{\lambda_{\text{obs}}/2})$$

- Assume $N_{
 m tot}=10^5$, $N_{
 m bins}=100$ and first bin contains:
 - 1100 events : maximum likelihood value $\lambda_{\rm obs} \simeq 9.8$ Wilks theorem: $p \simeq 0.0017$
 - 1150 events : maximum likelihood value $\lambda_{\rm obs} \simeq 21.7$ Wilks theorem: $p \simeq 3.2 \times 10^{-6}$
 - 1200 events : maximum likelihood value $\lambda_{\rm obs} \simeq 38.0$ Wilks theorem: $p \simeq 7.1 \times 10^{-10}$
- \rightarrow the 5σ discovery threshold corresponds to $x_1 \simeq 1162$ events

Exercise 1, cont.: Signal vs. Background





for python code see : maxLH_produce.py & maxLH_show.py

Sensitivity and Discovery Potential

- performance of the test
 - sensitivity level: defined as the level of $\mu_{\rm sig}$ such that 90% of the signal distribution is above 50% of the background distribution
- discovery potential: defined as the level of $\mu_{\rm sig}$ such that 50% of samples have a chance probability of 5.7×10^{-7} to be generated by background only
- → This is a challenge for brute-force background simulation you need $N_{\rm samples} \gg 10^7$ for accuracy!
 - However, Wilks theorem allows to extrapolate the background distribution very easily:
- \rightarrow For χ_1 distribution we know that the "5 σ " level corresponds to:

$$\lambda_{\text{threshold}} = 5^2 = 25$$

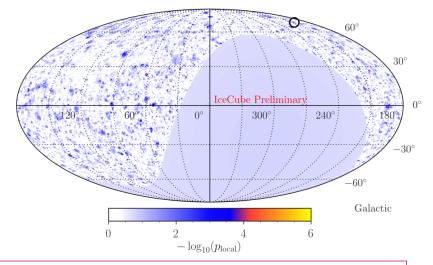
Trial Correction

- What happens if we want to find a signal not just in bin 1 but in any
 of the N_{bins} bins?
- We can simply repeat the test over all bins and identify the bin with minimum p-value p_* .
- Problem: There are many bins ("hypothesis") and we have to
 account for the fact that there can be a chance fluctuation in the local
 p-values.
- If $N_{\rm bins}$ are independent of each other (as in our example) then we can define a post-trial p-value as

$$p_{
m post} = 1 - \underbrace{(1 - p_*)^{N_{
m bins}}}_{
m background\ probability} \simeq N_{
m bins} p_*$$

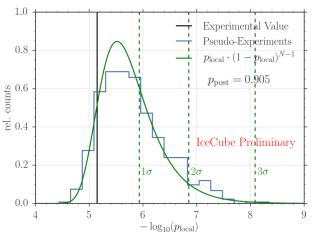
• Number of independent "trials", N_{trials} , is often difficult to estimate.

Example: IceCube Neutrino Data



"All-sky" point-like source search: each location tested for an excess!

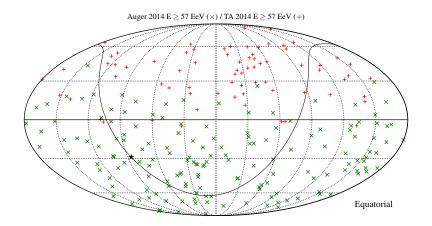
Example: IceCube Neutrino Data



- Trial factor: $N_{\rm trials} \sim N_{\rm bins} \sim \mathcal{O}(1000)$
- IceCube procedure: choose maximal p_{local} in sky map as a new test statistic and compare against maximal p_{local} of randomly generated sky maps

Part II Kolmogorov Smirnov Test

Example: Arrival Direction of Cosmic Rays



Anisotropies in the arrival directions of ultra-high energy cosmic rays (data from the observatories Telescope Array (TA) and Auger).

Auto-Correlation

- So far, we have only looked into local excesses in individual bins.
- This method was not sensitive to the correlation between events, e.g. in neighbouring bins or in small clusters.
- Consider N_{tot} events distributed on a sphere with position \mathbf{n}_i (unit vector).
- For two events with label i and j $(i \neq j)$ we can define an angular distance:

$$\cos \varphi_{ij} = \mathbf{n}_i \cdot \mathbf{n}_j$$

The cumulative two-point auto-correlation function is defined as

$$C(\{\mathbf{n}_i\}, \varphi) = \frac{2}{N_{\text{tot}}(N_{\text{tot}} - 1)} \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{i-1} \Theta(\cos \varphi_{ij} - \cos \varphi)$$
 (2)

with step function $\Theta(x) = 1$ for $x \ge 0$ and $\Theta(x) = 0$ for x < 0.

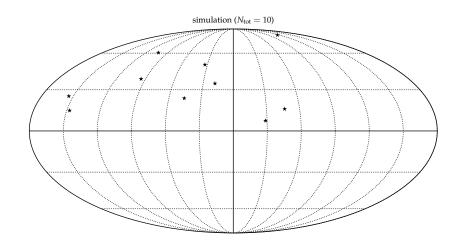
 \rightarrow This expression counts the pairs of events within angular distance φ .

Exercise 2: Event Distributions

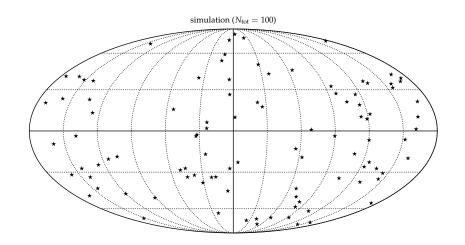
Generate mock data of events on a sphere for two categories:

isotropic distribution:

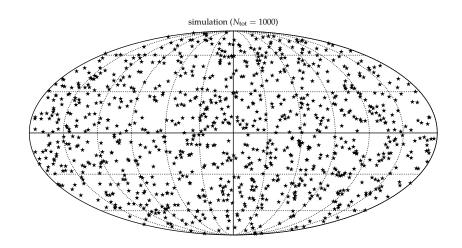
- generate $N_{
 m tot}$ events randomly distributed on a sphere
- e.g. python module healpy allows for pixelised sky maps with equal pixel sizes
- In general: How would you sample from an azimuth angle φ and zenith angle θ to obtain a random distribution?
- Derive the two-point auto-correlation function for the distribution.
- What distribution do you expect for a large number of events?
- biased distribution (bonus exercise):
 - generate N_{tot} events following a non-isotropic distribution
 - e.g. only sample events within a limited azimuth or zenith range, or events following a dipole distribution
 - How does the auto-correlation function compare to that of the isotropic distribution?



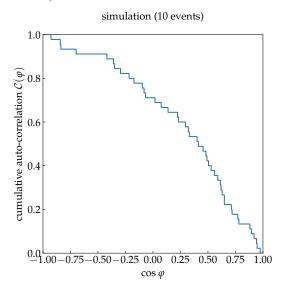
for python code see : twopoint.py



for python code see : twopoint.py

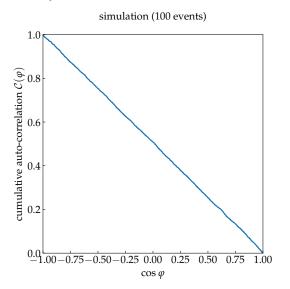


for python code see : twopoint.py



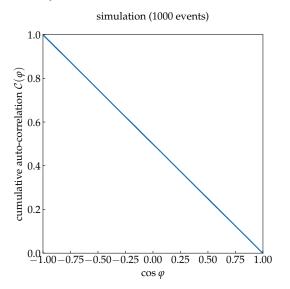
for python code see : twopoint.py

Exercise 2: Isotropic Distribution



for python code see : twopoint.py

Exercise 2: Isotropic Distribution



for python code see : twopoint.py

Exercise 2: Large-N limit

• In the limit of a large number of events, $N_{\rm tot}$ the cumulative distribution is just given by the relative size of the solid angle $\Delta\Omega$ with half-opening angle φ

$$\lim_{N_{\rm tot}\to\infty}\mathcal{C}(\{\mathbf{n}_i\},\varphi)\to\mathcal{C}_{\rm iso}(\varphi)=\frac{\Delta\Omega}{4\pi}$$

solid angle

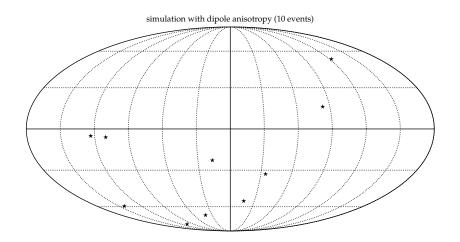
$$\Delta\Omega = 2\pi(1 - \cos\varphi)$$

• isotropic distribution:

$$C_{\rm iso}(\varphi) = \frac{1}{2}(1 - \cos \varphi)$$

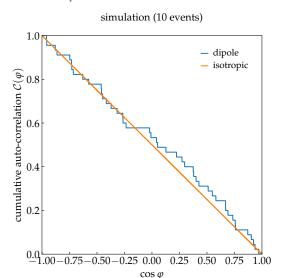
! Note: an isotropic distribution of a **finite** number of events will always show deviations from \mathcal{C}_{iso} .

Exercise 2: Anisotropic Distribution



for python code see : twopoint.py

Exercise 2: Anisotropic Distribution



for python code see : twopoint.py

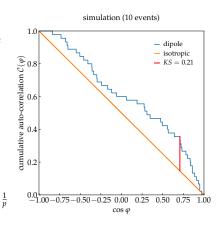
- We want to define a quantity that is a statistical measure for the difference between the empirical distribution and background distribution.
- Area between two curves?

$$\int d\cos\varphi |\mathcal{C}(\{\mathbf{n}_i\},\varphi) - \mathcal{C}_{iso}(\varphi)|$$

• Or, more general $(L^p \text{ norm})$?

$$\left[\int d\cos\varphi \left| \mathcal{C}(\{\mathbf{n}_i\},\varphi) - \mathcal{C}_{\mathrm{iso}}(\varphi) \right) \right|^p\right]^{\frac{1}{p}}$$

• Kolmogrov-Smirnov: $p \to \infty$.



• In general, given two cumulative probability distributions, $0 \le A(x) \le 1$ and $0 \le B(x) \le 1$, we can define the **Kolmogorov-Smirnov test** as:

$$KS = \sup_{x} |A(x) - B(x)|$$

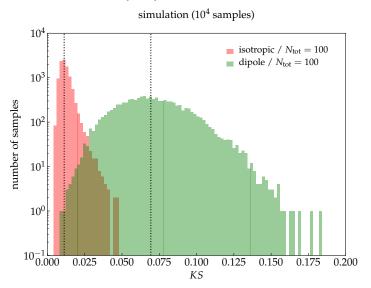
- Cumulative auto-correlation function $C(\{\mathbf{n}_i\}, \varphi)$ follows the probability distributions to find a pair of events within an angular distance φ .
- We will use this in the following to define a test statistic, that describes deviation from an isotropic background distribution:

$$KS(\{\mathbf{n}_i\}) = \sup_{\varphi} |\mathcal{C}(\{\mathbf{n}_i\}, \varphi) - \mathcal{C}_{iso}(\varphi)|$$

- **Plan:** For a fixed number of events $N_{\rm tot}$ we can simulate isotropic event distributions (null hypothesis) and their KS values (test statistic).
- → Separation of *KS* for observed data from background distribution allows to **estimate significance of an excess**.
 - Similar to Wilks theorem the background distribution approaches a
 predictive asymptotic behaviour for large number of events, but we
 will not cover this here.
 - number of event pairs increases as

$$N_{\mathrm{pair}} = \frac{1}{2} N_{\mathrm{tot}} (N_{\mathrm{tot}} - 1) \propto N_{\mathrm{tot}}^2$$

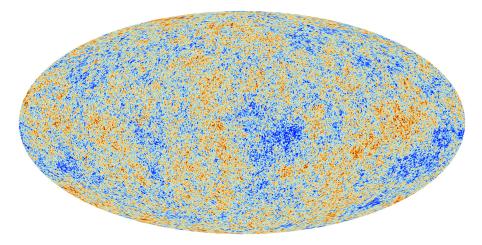
Cumulative auto-correlation function in Eq. (2) becomes numerically inefficient.



for python code see : KS_produce.py & KS_show.py

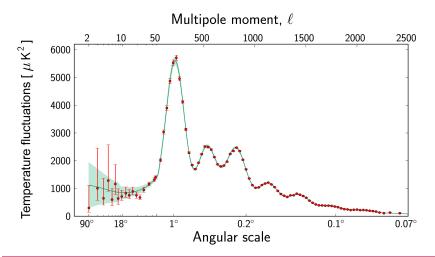
Part III Angular Power Spectrum (optional, depending on time)

Example: Temperature Fluctuation in CMB



Temperature anisotropies of the cosmic microwave background (CMB) observed by the Planck satellite.

Example Temperature Fluctuation in CMB



The angular power spectrum C_{ℓ} of the temperature fluctuations.

Auto-Correlation for Large $N_{ m tot}$

- In the Kolmogorov-Smirnov test we observed that for large $N_{\rm tot}$ the number of pairs increase as $N_{\rm tot}^2$ and the calculation can become very inefficient.
- In large-N_{tot} limit we can approximate the event distribution by a smooth function

$$g(\Omega) = \lim_{N_{\text{bins}} \to \infty} \frac{\Delta n(\Omega)}{N_{\text{tot}} \Delta \Omega}$$

 On a smooth distribution we can define the two-point auto-correlation function as

$$\xi(\varphi) = \int d\Omega_1 \int d\Omega_2 \delta(\mathbf{n}(\Omega_1)\mathbf{n}(\Omega_2) - \cos\varphi) g(\Omega_1) g(\Omega_2)$$

• **Note:** This is the differential version of cumulative auto-correlation function.

Auto-Correlation for Large N_{tot}

• **comment 1** : *cumulative* two-point auto-correlation function:

$$C(\varphi) = \int_{\cos \varphi}^{1} d\cos \varphi' \xi(\varphi')$$

• **comment 2** : isotropic distribution $g(\Omega) = 1/(4\pi)$

$$\xi(\varphi) \stackrel{+}{=} \frac{1}{2} \quad o \quad \mathcal{C}_{\mathrm{iso}}(\varphi) = \int_{\cos \varphi}^{1} \mathrm{d}\cos \varphi' \frac{1}{2} = \frac{1}{2}(1 - \cos \varphi) \qquad (\checkmark)$$

† follows from:

$$\delta(\mathbf{n}(\Omega_1)\mathbf{n}(\Omega_2) - \cos\varphi) = 2\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell}(\cos\varphi) Y_{\ell m}^*(\Omega_1) Y_{\ell m}(\Omega_2)$$

Spherical Harmonics

• Every smooth function $g(\theta, \phi)$ on a sphere can be decomposed in terms of spherical harmonics $Y_{\ell m}$:

$$g(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

coefficients given by:

$$a_{\ell m} = \int d\Omega Y_{\ell m}^*(\theta, \phi) g(\theta, \phi)$$

for real-valued functions:

$$a_{\ell m}^* = (-1)^m a_{\ell - m}$$

Spherical Harmonics

- The low- ℓ components are
 - $\ell=0$: monopole $Y_{00}=1/\sqrt{4\pi}$
 - $\ell = 1$: dipole

$$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta \quad Y_{1-1} = \sqrt{\frac{3}{8\pi}}\sin\theta e^{-i\phi} \quad Y_{11} = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi}$$

- $\ell = 2$: quadrupole, $\ell = 3$: octupole, etc.
- angular power spectrum:

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$

• simple relation to ξ via Legendre polynomials P_ℓ :

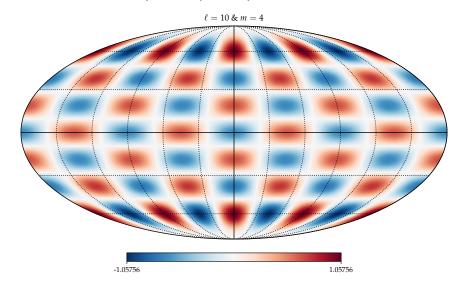
$$\xi(\varphi) = 2\pi \sum_{\ell} (2\ell + 1) \frac{C_{\ell}}{\ell} P_{\ell}(\cos \varphi)$$

Exercise 3

- ullet visualize spherical harmonics for various combinations of ℓ and m
- for example, in python use healpy:

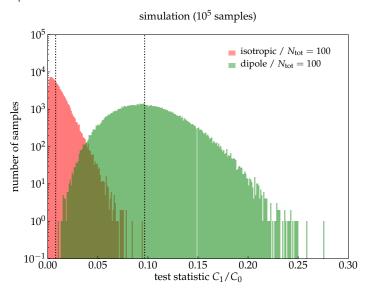
```
nside = 128
npix = H.nside2npix(nside)
IMAX = 4*nside
almsize = np.int(((LMAX+2)*(LMAX+1))/2)
alm = np.zeros(almsize.dtvpe=np.complex)
1 = 10
m = 4
index = H.sphtfunc.Alm.aetidx(LMAX,1,m)
alm[index] = 1.0
map = H.alm2map(alm,nside,lmax=LMAX)
mapmax = max(max(map), max(-map))
maptitle = r'$\ell= ' + str(l) + '$ \& $m= ' + str(m) + '$'
H.mollview(map,cmap=cm.RdBu_r,max=mapmax,min=-mapmax,title=maptitle)
H.graticule()
show()
```

Exercise 3: Example Map of Spherical Harmonic



for python code see : Ylm.py

Power Spectrum



for python code see : $C1_produce.py \& C1_show.py$

Power Spectrum

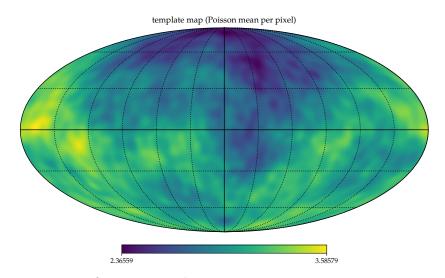
- In general, we want to judge if a distribution of events shows evidence for an excess in the power spectrum compared to background expectations.
- Strategy: Generate background maps from data via scrambling:
 - a) choose two random bins i and j
 - b) interchange the events in the two bins
 - c) repeat from a) until $N_{\rm scramble} \gg N_{\rm bins}$
- The distribution of the power spectrum of these maps gives an estimate of the median and variance of the background power.
- Expected median noise level:

$$\mathcal{N} = \frac{1}{N_{\text{tot}}}$$

Exercise 4

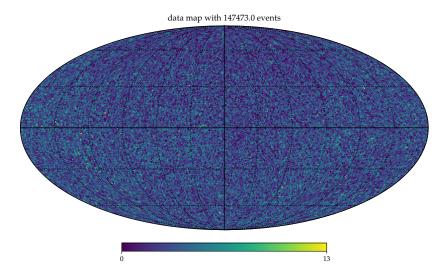
- Load the two data files truemap1.fits and eventmap1.fits (the second file is a bin-wise Poisson sample with mean given in the first map)
- Display the maps
- Determine and compare the power spectra C_ℓ/C_0 of the two maps, e.g. with HealPix or healpy
- Generate a background map via data scrambling, as described on the previous slide.
- Compare the power spectrum of the event map to the expected noise level $1/N_{
 m tot}$.

Exercise 4: Template vs. Event Map



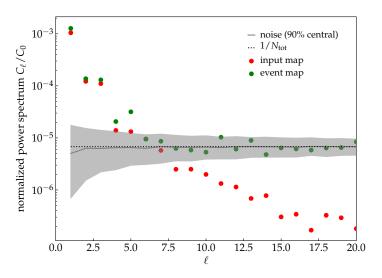
for python code see : powerspectrum.py

Exercise 4: Template vs. Event Map



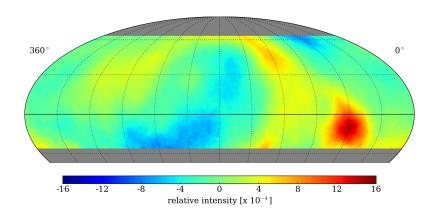
for python code see : powerspectrum.py

Exercise 4: Power Spectra



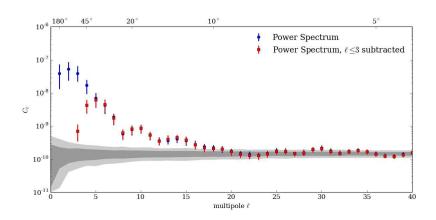
for python code see : powerspectrum.py

Example: HAWC Anisotropies



Study of cosmic ray arrival directions with the High Altitude Water Cherenkov (HAWC) detector.

Example: HAWC Anisotropies



Study of cosmic ray arrival directions with the High Altitude Water Cherenkov (HAWC) detector.