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Info

* This ‘guest’ lecture is about an interesting statistical topic,
but it won't be on the exam

* New statistical tool that people can think about adding to
their analysis and research
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Background Story

* There is a neutrino oscillation anomaly that has existed in a
few experiments since ~1995

* |f the anomaly has a particle physics motivation, it can be tested by
experiments

* Not all neutrino oscillation experiments see the anomaly

e Particle physics motivation implies a new fundamental particle, i.e. a sterile neutrino
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The Big Table of Disagreement

*arXiv:1803.10661

Analysis PG
Global 3.71 x 10~
Removing anomalous data sets
w/o LSND 1.6 x 1073
w/0 MiniBooNE 5.2 x 1079
w /0 reactors 3.8 x 107°
w/o gallium 4.4 x 1078
Removing constraints
w /0 IceCube 4.2 x 1077
w/0o MINOS(+) 4.7 x 1076
w/o MB disapp 6.0 x 107
w/o CDHS 7.5 x 1077
Removing classes of data
v, dis vs app 3.6 x 1072
v, dis vs app 2.3 x 1074
v, dis + solar vs app 7.4 x 1070

PG = Parameter goodness-of-fit,
i.e. the probability that the
selected data agree
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Background Story

* Two separate analyses in 2015/2016 by IceCube looked for
the sterile neutrino signature if it exists (it doesn’t!)
e arXiv:1605.01990

e Analyses are extremely difficult and sensitive to systematic
uncertainties
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lceCube Experimental Signature

* Neutrino rate changes for, mostly, muon antineutrinos (v,

® Y-axis is neutrino energy

e X-axis is the cosine of the incoming neutrino zenith direction
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Sterile Search Approach

* Two separate diffuse v, event selections of 1-year livetime
were used to search for a sterile neutrino signal

* The pronounced sterile neutrino feature is smeared out by:

* Reconstructed energy estimator - £, ““

e Reconstructed direction estimator - cos §’¢¢
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“BEverything you always wanted to know about pulls”

Res I d u a ‘ / P u ‘ ‘ S http://physics.rockefeller.edu/luc/technical reports/cdi5776 pulls.pdf

e Analysis is done by fitting Monte Carlo simulation to match the
observed data

e Fit systematic uncertainty parameters

* Fit physics parameters

o After fitting, check that the best-tit expectation ‘'matches’ the
data by looking at the pulls (also known as residuals)

Frp: . — Obs. - i=bin of neutrino energy
pfu,llz j = pz,g “J j=bin of cos(zenith)
7 03,5 o; /=uncertainty

e Expected number of neutrinos in each bin compared to observed
e Distribution should be ‘mostly’ Gaussian-like if the fit is good
e For statistical-only residuals the uncertainty is sqrt(# Expected events)

e Each pull value can be loosely treated as a ‘sigma’ value
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http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf

Exercise 1

Expectation
= 9ie 9le
* Some PDF gives expected
number of events in our 2D y | 99| 100 99
phase-space of(y, p)
e 3 binsinyand 3 binsinp 98 | 100 99
e PDF can either be from a model 0
w/ a best-fit or predefined
Observation
* Create the following pull 102] 90 101
plots using the data
e 2D pull plot; can be just color- y 97 | 103 92
based representing the pull
value

83 | 111 96

e 1D projection; histogram of all
the individual residuals V.
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Exercise 1 - Extra

* |f you have time, you can generate pseudo-experiments by
statistically fluctuating the expectation bin counts and
produce multiple pull distributions
* |n these pseudo-experiments, the ‘observed’ is the Monte Carlo

statistically fluctuated number of events in each bin
e Uncertainty is still sqrt(# of Expected events)
Expectation

99 99 =

% 99 | 100 99

98 | 100 e
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Pull Plot - Analysis A

e Each bin gets a pull value

* |ow statistics bins can have very
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reasonable
statistics
statistical-only

distribution
looked ‘okay

e 200+ bins with
 Uncertainty was
ranges are set by
analyzers

Pull Plot - Analysis B
e Bin widths and

e 1D pull
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The Method

* Take the 2D histograms of data and expectation events,
and compare all possible combinations of adjacent bins
and scan over the tull region ot phase space
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Backup
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Back in a bit, getting
some coffee &

stretching legs!
-Jason




