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• For the following nested sampling lecture, I have included 
more references at the end of the slides as well as on the 
course webpage 

• As far as packages to use for nested sampling, I am fond of 
Nestle (see online links) and see that UltraNest might also 
be a nice option (along with SuperBayeS)

Comments
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• One can solve the respective conditional probability equations for P(A 
and B) and P(B and A), setting them equal to give Bayes’ theorem: 

• The theorem applies to both frequentist and Bayesian methods.  
Differences stem from how the theorem is applied and, in particular, 
whether one extends probability to include some degree of belief.

Bayes’ Theorem (from Lecture 5)
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P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• Previously, we have focused on the posterior distribution P(Θ|D,H) 
which is critical for parameter estimation and we used Markov Chain 
Monte Carlo for calculating the marginal likelihood P(D|H) 

• For model selection — versus parameter estimation — the marginal 
likelihood is important in its own right. The problem is that many 
MCMC methods are slow (simulated annealing).

Slight Notation Shift
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P (⇥|D,H) =
P (D|⇥, H) P (⇥|H)

P (D|H)
D are data
⇥ are parameters
H is hypothesis or model
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• If model selection is important then comparing models can 
be done via the respective posterior distributions 

• The “marginal likelihood” is now rebranded as the 
“Bayesian evidence” and noted as Z 

• Reversing the traditional MCMC approach, the ‘evidence’ 
is now the primary target, and the posterior is a by-product 

• Note: we won’t be doing model selection explicitly in this 
lecture, but it is the motivation for much of the following 
material

New Task
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P (H1|D)

P (H0|D)
=

P (D|H1)P (H1)

P (D|H0)P (H0)
=

Z1P (H1)

Z0P (H0)
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• In 2004, John Skilling came up with a new Monte Carlo 
sampling technique, known as nested sampling, to more 
efficiently evaluate the bayesian evidence (Z) 

• For higher dimensions of Θ the integral for the bayesian 
evidence becomes challenging

Nested Sampling
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Z =

Z
L(⇥)⇡(⇥)d⇥

L is the likelihood

⇡ is the likelihood
L is the likelihood
⇡ is the prior
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• If numerical integration in higher dimensions is troublesome, then we 
can transform the multi-dimensional integral to a one-dimensional 
integral, via 

• The new prior X is defined such that  

• Note that X is a probability function and can only be in the range 
from 0 to 1 

• L(X) is also now a monotonically decreasing function 

• A clever approx. to get X will be covered in later slides

Nested Sampling
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dX = ⇡(⇥)d⇥

X(�) =

Z

L(⇥)>�
⇡(⇥)d⇥

Z =

Z 1

0
L(X)dX

*For more justification, 
see the original paper 

by J .Skilling
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• The bayesian evidence (Z) is now the 1-D integral of the re-
parameterized likelihood ( ) integrated over the re-
parameterized prior (X) 

• The shape of  could be any shape, but it is monotonically 
decreasing from 0→1, and by construction is bounded at 0 and 1.

ℒ(X)

ℒ(X)

New Likelihood in 1-D
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*J. Skilling

dX = ⇡(⇥)d⇥

X(�) =

Z

L(⇥)>�
⇡(⇥)d⇥

Z =

Z 1

0
L(X)dX
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• The bayesian evidence is now the 1-D integral of the re-
parameterized likelihood integrated over the re-parameterized prior 
• An analytic determination of the integral is not an option. If we could do it 

analytically, we wouldn’t be using numerical integration. 

• Use points sampled in X to calculate the trapezoid sum 

• Diagram below (right) shows X and L for 4 sampled points

New Likelihood in 1-D
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*J. Skilling

upper bound - light grey

lower bound - dark grey
trapezoid sum - black line
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• For a simple 2-dimensional case, 4 ‘live’ points are drawn at 
random. The likelihood for each point is calculated, and has an 
associated value of X. 

• Note that multiple points of Θ1 and Θ2 can have the same value of X 

• This illustration nicely samples the space with only 4 points, which is 
uncommon and unrealistic

Simple Cartoon
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arXiv:1306.2144Θ1

Θ2

True, but unknown,  
likelihood contours

X

L
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• Instead of relying on luck, it is better to sample the space 
sparsely where the new likelihood is low, and sample 
frequently in the space where the likelihood is high(er)

Sampling
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Shaded areas are the true 
underlying contours

http://
www.inference.phy.cam.

ac.uk/bayesys/box/
nested.pdf

It is a flat prior in 2-D

http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf
http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf
http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf
http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf
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• Each of the 8 initial live points 
has a likelihood value L(xi) that 
can be ordered: L(x1) < L(x2) < 
L(x3) < L(x4) < L(x5) < L(x6) < L(x7) 
< L(x8) 

• To get the x-values, 8 values are 
drawn from a uniform distribution 
in the range  0-1, and the largest 
x-value is defined as x1 

• Second largest x-value is x2, third 
largest is x3, etc. 

• Can we use more than just the 
initial 8 points in some smart 
way? 

• Absolutely!!

Sampling Start
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• In order to better sample where 
the likelihood is high, the point 
with the lowest L(x), i.e. x1 in the 
diagram, is replaced by a new 
point x’ 

• A new point ( Θ1, Θ2), 
equivalently x’, is drawn from the 
prior which produced the initial 
points. Now in the range 0 < x’ < 
xlowest 

• x’ must satisfy that L(x’) > L(xlowest) 

• Remove the point xlowest, but store 
it’s values to calculate the 
likelihood integral, e.g. bayesian 
evidence 

• Next slide covers other approx. for 
values of x

Sampling Start cont.
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Pseudo-Code
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 Generate n points from the prior 
 Loop where i increments as i=1,2,3,... 
 { 

* Find the point Xworst with the lowest likelihood, Lworst. 
Remove it from the population, but store it for 
results. Estimate the value of Xworst as ((N-1)/N)i, for 
N live points 

* Add a new livepoint generated from the prior. 
 The new live point must satisfy that L(Xnew)>L(Xworst). 

 }

*G. F. Lewis

Other estimates of X can be 
* ((N-1)/N)i 
* (N/(N+1))i 
* exp(-i/N)
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Sampling more
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*J. Skilling 2006
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Exercise #3 (cont.)
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• For 2000 iterations plot Markov Chain Monte Carlo 
samples as a function of iteration, as well as a histogram of 
the samples, i.e. the posterior distribution.

*Reminder from the lecture 
about Markov Chain Monte 

Carlo
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• The ‘Egg Carton’ likelihood landscape is a benchmark 
likelihood landscape for difficulty and stress testing of 
bayesian sampling techniques

Nested Sampling in Action
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• Samples sparsely in low likelihood regions and samples 
densely where the likelihood is high 

• Can handle irregular likelihood landscapes 

• Many applications require nothing more than setting the 
range over which to generate ‘live points’ 

• Does not require lots of tuning 

• Most of the time the sampling prior is uniform, i.e. flat 

• The true value of the maximum likelihood estimator is not 
essential to be known, it just needs to be within the region 
where the points are sampled 

• Efficient when compared to other MCMC methods

Nested Sampling Benefits
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• Similar to every other fitting technique, there is no 
guarantee that any best-fit values are global best-fit values 

• No rigorous termination criterion 

• There is always the possibility that there exist some unsampled 
regions in X which have very large likelihood values which will 
contribute to the bayesian evidence value Z 

• Unlike other MCMC algorithms which sample near the 
current point, many nested sampling algorithms sample 
uniformly over the full parameter space 

• Higher dimensions can see slow-downs 

• Trapezoidal summing will induce some uncertainty and 
possibly small bias

Cons
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• How do we actually sample new nested points X’ that are 
better than the current Xlowest, where Xlowest has the lowest 
likelihood? 

• In n-dimensions and without knowing the true likelihood 
contours, this is problematic.

Big Issue
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Θ1

Θ2

True, but unknown,  
likelihood contours

X
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• Crude nested sampling was somewhat inefficient when it 
came to multi-modal likelihood landscapes 

• But, much better than conventional maximum likelihood fitters when 
it comes to not getting stuck in local minima 

• Instead of using a multi-dimensional uniform prior for each 
replacement point, use an n-dimensional ellipsoid for 
resampling 

• The hyper-ellipsoid is defined by the current iteration live points 

• The hyper-ellipsoid for re-sampling has a small enlargement margin 
as a safeguard

MultiNest Application

21
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• Start with a sample of live points using a uniform prior in n-
dimensional cube 

• After a few iterations resampling within an ellipsoid we 
have:

MultiNest Ellipsoid Sampling

22
*F. Feroz

Underlying true likelihood 
contoursLive points

Lowest likelihood 
live point,  

which will be 
replaced
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MultiNest Evolution

23
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• Dis-joint regions, as in fig. (a), as well as multi-dimensional 
multi-modal regions, as in figs. (a) and (b), can be found 
efficiently without continual resampling of the whole space

MultiNest Pictures

24
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• Can be an excellent method to map out a likelihood/
probability landscape that is complicated 

• MultiNest is very nice, but the base package requires 
Fortran, even though there are nice wrapper packages in 
other software languages

Nested Sampling

25
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• In Python there are a handful of nestling sampling 
packages 

• pymultinest (https://johannesbuchner.github.io/PyMultiNest/) 

• nestle (http://kbarbary.github.io/nestle/) 

• SuperBayeS (http://www.ft.uam.es/personal/rruiz/superbayes/?
page=main.html)

Packages

26

https://johannesbuchner.github.io/PyMultiNest/
http://kbarbary.github.io/nestle/
http://www.ft.uam.es/personal/rruiz/superbayes/?page=main.html
http://www.ft.uam.es/personal/rruiz/superbayes/?page=main.html
http://www.ft.uam.es/personal/rruiz/superbayes/?page=main.html
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• The task is to produce a posterior distribution using a 
(hopefully) nested sampling algorithm for the classic         
2-dimensional egg carton likelihood 

• First, make sure you have a nested sampling algorithm 
package installed 

• Second, make a plot of the raster scan of the the 2-D 
likelihood for reference 

• Third, make a plot of the posterior distribution from the 
sampling algorithm

Exercise Egg Carton
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L(✓1, ✓2) / cos(✓1) cos(✓2)
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• The raster scan across θ1 and θ2 and the posterior 
distribution

Exercise Egg Carton cont.
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• Another example is the 2- or 3-dimensional gaussian shell 

• The probability is highest, i.e. centered, on the surface of a sphere or 
cylinder, and has a gaussian width 

• Looking at 3D gaussian surfaces is tough, so we will do a projection 
into 2D for visualization

Exercise Gaussian Shell/Cylinder
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c is the center of the sphere/cylinder 
r is the radius 
σ is the gaussian width 
θ is a/the sample point as a vector, e.g. (x,y,z,…) in cartesian coordinates

circ(~✓;~c, r,�) =
1p
2⇡�2

exp

"
� (|~✓ � ~c|� r)2

2�2

#
L(~✓) = circ(~✓;~c, r,�)
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• Similar to the Egg Carton exercise generate the following 
plots: 

• For a single cylinder/sphere of r=2, σ=0.1, centered at c=( 2.5, 3.1) 

• Plot the underlying probability/likelihood space 

• Plot the posterior sampling 

Exercise Gaussian Shell/Cylinder 
cont.
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• Note that there might be issues 
with the computer/machine 
precision when calculating exp() 
or ln() for negative, extremely 
large, or extremely small values 
related to the likelihood
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• Repeat the previous task with two overlapping spheres/cylinders 

• For r=1, σ=0.1, with one centered at c1=( 2.5, 3.1) and the other at c2=( 3.1, 3.7) 

Exercise Gaussian Shell/Cylinder 
cont.
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• Using the following likelihood for the two cylinders plot the 
underlying likelihood and posterior distribution:  

• σ1,2=0.1, c1=( 2.5, 3.1) and c2=( 2.7, 2.7) and r1=2 and r2=1

Exercise Nested Cylinder
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• Try higher dimensionality landscapes, e.g. 16-dimensions, 
and see if the sampler starts to slow down dramatically for 
the gaussian shell hyper-sphere likelihood

Extra
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• Excellent and readable paper by developer John Skilling 

• http://projecteuclid.org/euclid.ba/1340370944 

• MultiNest 

• Slides by F. Feroz (http://www.ics.forth.gr/ada5/pdf_files/
Feroz_talk.pdf) 

• Papers (http://arxiv.org/abs/0809.3437, http://arxiv.org/abs/
1306.2144) 

• “Nested Sampling Methods” by Johannes Buchner 

• https://arxiv.org/pdf/2101.09675.pdf 

References
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