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Statistical Tests - General |dea

A simulated SUSY event

® General idea - Particle Physics context high p.. jets

of hadrons

® Given the measurement of an
individual event, one has a
collection of numbers: £ = (21, ..., %)

x1 = number of muons x9 = number of jets ...

® The set of measurements follow
some n-dimensional PDF that missing transverse energy
depends on the type of event Background events
produced. For each reaction we

can consider a hypothesis for the
PDF. Example:

f(Z|Hyp), f(Z|Hy), ...

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a
SUSY event.

® We call Hp the null (background)
hypothesis (the event type we
want to reject) and Hj the
alternate (signal) hypothesis
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Statistical Tests - General |dea

® Hence, rather than estimating an unknown parameter, the results of an experiment
may be used to determine if a given theoretical model is acceptable given the
observations. For example, suppose a model estimates the lifetime of a nucleus.
s a set of data compatible with the model(?):

Hy: 7=
Hi:7# 19
® The above is an example of a parametric test. Typically a hypothesis cannot be

proven true or false but you can determine the probability for obtaining the
observed result it you assume the hypothesis is true.

® Hypothesis testing is also a part of data analysis when, for example, you decide if
a specific observed event is signal or background. Suppose you have a data
sample with two kinds of events that correspond to the null and alternate
hypotheses and you want to select those that are of the type corresponding to the
alternate hypothesis. Then each event is a point in the space and we define a
decision boundary of where to accept/reject events belonging to each of the
event types.
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Statistical Tests

® F[vent Selection

® selection cuts for events, e.g.

Tj <G X < C

® \We would like to optimize this process... — ;

linear

*G. Cowan
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Decision Boundary and Test Statistic

* A decision boundary can be defined using an equation or
function that can be used to discriminate signal (H;) from

background (Ho):

_)
T (,CL') — t “t” can be a multidimensional vector

e \What we want is a single valued test statistic (t) which
reduces lots of data or information to a single quantity

e A likelihood value is an example of taking lots of discrete data points
and reducing the ensemble to a single quantity

* For discrete data points we can define a function which reduces the
number of dimensions without losing the ability to separate ‘signal’
from ‘background’. E.g. in the previous slide we could use radius

from the origin where r; ; = \/x% + 22 becomes the test statistic, i.e.

t=r.
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Statistical Tests - Decision Boundary

® The decision boundary can be
defined using the test statistic
to discriminate between

Q 2 | |} | |
: 3
hypotheses, e.g. signal or fou
background ™! accept H, .*.,. reject H, |
® Each hypothesis will imply a
given PDF for the test statistic, T
t:
g(t; Hy) : PDF for t under Hy true 05 L
g(t; H1) : PDF for t under H; true
® Define: 0
0 1 2 3 4 5
t > t.y: Critical Region r

t < teut Acceptance Region

tewt Decision Boundary
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Statistical Tests - Decision Boundary

* The decision boundary defines
a test. If the data falls into the
critical region (t>tc.) then we
reject the null hypothesis.

2 | ' I |
i

cut

g()

accept Hy ai-in reject Hy
* But there is some probability that 15 |

we wrongly reject Hg

e Define the error of the first kind
(x) as a probability to reject the
null hypothesis if the null
hypothesis is true:

o = / g(t; Hy)dt °

tcut

* The statistical significance of
rejection is given by the p-value
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P-Value

e A p-value is the probability under the assumption of a
specific model or hypothesis, generally Hop, of observing a
test-statistic as compatible to, or less compatible with, the
observed data
* For example, consider we measure some value pobs and we want to

see if it is statistically compatible with some other value of p (Ho)

* The test statistic (q,) reflects the level of agreement between the
data and the hypothesized value of py

* The test statistic is generally constructed such that higher values
represent increasing incompatibility of the model (Ho) with the data

m . ' '
/ qu IS the test statistic for a
q

f (Q,u |ﬂ)qu hypothesized value of u, and
“Qu.obs” is the TS value from

the observed data
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Fven More Fxtreme

From Bayes Lecture

e Forthe instance where k=12, gaussian mean=500 and 0=61
we've got some some issues

* The bayesian posterior
best estimate is ~409,

but the best likelihood ~— feef o
estimate is ~125. %-012;— —
e According to the o
likelihood PDF, how R
likely is it to have a value " F
> 4097? i
0.002_—
e (hint integrate the tail of EA L -,
the likelihood distribution 0020 S A S O TR etimate

> 409)
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P-Value in Action

* For this example we consider N to be the test statistic (t=N),

the maximum a posteriori value of 409 to be our alternate

hypothesis (H1), and value of 125 to be our null hypothesis

(Ho).

e |f we assume Hpto be
true, then g(t;Ho) gives
us the test statistic
probability distribution
function, and our p-
value is:

p-value = / g(N;125)dN =~ 0.00017
409

o Probability
<
I

o
—
N

0.01

0.008

0.006

0.004

0.002

0

i g(tHo)=g(N;Ho)=g(N;125)

= Posterior k=12

=== | jkelihood k=12

:_ Included here only for completeness
- g(t;H1)=9g(N;H1)=g(N;409)
M “. [ L Lol 1 J J J _._g_L I T
100 200 300 400 500 600 700 800
N estimate
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Exercise #3 From a Previous Lecture

* There is a file posted on the class webpage from “Parameter
Estimation and Confidence Intervals” lecture which has two
columns of x numbers (not x and y, only x for 2 pseudo-
experiments) corresponding to x over the range -1 < x < 1

e Using the function:
flz;o, B) = 14 ax + B

e Find the best-fit for the unknown & and B

e Calculate the reduced chi-square goodness of tit (p-value) by
histogramming the data. The choice of bin width can be important.

e Too narrow and there are not enough events in each bin for the statistical comparison.

e Too wide and any difference between the ‘shape’ of the data and prediction histogram
will be washed out, leaving the result uninformative and possibly misleading.
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Previous Lecture Exercise

* For my own interest | generated an additional file, which is posted as "extra
data file” for “Lecture on Parameter Estimation and Confidence Intervals”

e Histograms: the x-values of the two pseudo-experiments, the expectation
from PDF using the best-fit values and the true values (which | knew

because | generated the data)
500

data - first column

450 data - second column
—— PDF (fit) 2=0.41 $=0.55
400| —— PDF (true) a:=0.40 $=0.60

——— PDF (fit) 2=0.04 p=0.57

350

300

250
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Follow-up on Exercise

* In Exercise 3 from a previous class it was an optional exercise to
calculate the goodness-of-tit. The p-value from a chi-squared
distribution is an appropriate choice.

e Visually, the previous plot of the x data from the first and second column look to

agree with the PDF using their best-fit values of & and B returned by the LLH
minimization

e The actual PDF for the data in the second column was:

fo(z) o< 1 4+ azx + Bx® — yz°
(@ =0.4,8=0.6~=0.9)
e But the fit was done for both data sets with the function
f(z;a,8) =1+ ax + Sz
data 1 (chi-square, p-value):
(120.8030913/7202488, 0.051205065535612139)

data 2 (chi-square, p-value): " histogram
(384.85801188036919, 6.338542918607307¢-36)
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Funny Thing

* In 2016 a student asked “For repetitions, what should a
distribution of p-values look like?”, and | didn't know

* There are proofs that when the hypothesis is correct, the distribution

of p-values is uniform from 0-1, i.e. flat

e | wanted to check ‘uniformity’ using the same PDF, i.e. (1+0x+Bx2)/
(2+B/3), as before but using different values of & and

e Because we have Monte Car

sample from the ‘correct’
statistic for the p-value ca

PD

o capability, we can randomly

- and use the y? as the test-

culations

e By using Monte Carlo we are assured that the hypothesis we are
comparing to the pseudo-experiments is correct

oskinen - Advanced Methods in Applied Statistics




Results - Odd

e For 800 pseudo-experiments (w/o any fitting), each having 2000 points,
one set of o and B values produce uniform p-values while the other set
does not, both using the same original PDF of (1+oax+Bx2)/(2+p/3)

100

— 2 [0:=0.371 $=0.515]

80 - e 2 [0.=1.396 $=0.823]

60

40

II|III|I|'!

20

L .
- |1 | I | *Different file than
what is posted online

OIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 0.1 0.2 0.3 0.4 : 1
p values
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Debugging

e My first thoughts were to look at the underlying PDFs

* The y2 test-statistic can be inaccurate in regions of low event rates

* |increased the number of samples in each pseudo-experiment by a

factor of 4 to 5... but there was no change
60

— PDF (fit) a=0.37 $=0.51
50

— PDF (fit) a=1.40 $=0.82
40

30

20

10
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Clue

* | stopped trying to be clever and just brute force plotted
things
* | histogrammed the x values for 800 pseudo-experiments, each w/
10k points and also plotted the underlying PDF
e For a=1.396 and p=0.823 they didn’t match at x values of 0.8-1.0

250
Only 1 of 800 pseudo-
— PDF (true) a=1.396 p=0.823 .
200 experiments had an
upward fluctuation in
: the number of events
150(— .
a for the bin 0.98 < x <
- 1.0. But, | expect ~1/2
1001~ of the pseudo-
- experiments to have
co Things seem to an upward fluctuation
diverge around x=~0.8 : : :
| | | | | | in any single bin

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
X
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Solution

e So | went back to my PDF calculation and using a=1.396

and p=0.823 for:
1 4+ az + Bz?

e What's so special about x=0.87

e Well, f( x=0.8; x=1.396, B=0.823)=1.039

* The distribution is normalized to 1, but the instantaneous probability
density goes above 1 in the range of ~0.8-1

* My accept/reject method of Monte Carlo sampling the PDF went
from-1to 1inx, butonlyOto1iny

random.uniform(-1..1)
random.uniform(@, 1)
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Fixed

e Changing the bounds on my accept/reject sampling fixed the problem

e This was a silent failure mode, which can be incredibly difficult to debug.
Be thankful when your code crashes, because then it's obvious.

— 2 [0=0.371p=0.515]
35
e 2 [01=1.396 $=0.823]

111 il 1 Lo i
Py

[—

15

10

OIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p-values
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Statistical Tests - Decision Boundary

® The decision boundary
defines a test. If the data falls
into the critical region then we
reject the null hypothesis.

® Define the error of the first
kind as o as a probability to
reject the null hypothesis if
the null hypothesis is true:

o = / g(t; Hy)dt
t

cut

® The statistical significance of
rejection is given by the p-
value
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Statistical Tests - Decision Boundary

® Consider now the alternate
hypothesis.

2 | ' I |
i

cut

g()

® Define the error of the second kind
as B as a probability to accept the :
B P . Y P accept Hy it reject Hy

null hypothesis but the true 15 L "
hypothesis was the alternate

hypothesis
Leut
g = / g(¢; Hy)dt

® The power of the test, probability 05 F
of rejecting the null hypothesis

when it is false, is (1-P). 0 J

® A more powerful test leads to: (1-8)
= maximized. Aim for & and B
small as possible. B
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Statistical Tests - Signal & Background

® The probability to reject a
background hypothesis for
background events is:

2 | ' I |
i

cut

g()

o0 accept Hy i reject Hy
€p = / g(t;b)dt = « 15 1 -
teut

cu

® The probability to accept a
signal event as signal is the
signal efficiency:

632/ g(t;s)dt =1—p
teut

cCuw
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Statistical Tests - Test Statistic

® C(Constructing a test statistic
® Keep in mind the goal is to choose a test’s critical region in an optimal way

® The Neyman-Pearson lemma states:

To obtain the highest power for a given significance level in a test
of the null/background hypothesis versus the alternate/signal
hypothesis, choose the critical region such that:

f(z|61)
f(z[6o)

® \We can demonstrate this method by choosing a critical value for x and both

>k inside the region

the null and alternate hypotheses are simple (only two possible values):
61)
o = / f(il?‘@o)dx 1— ﬁ / f l’|91 f ZE| 1 ‘(9())
R

® To maximize the power, take the region of 1-f, and define the set of points

according to the above condition. Note that k is determined from «.
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Maximum Likelihood Ratio

e An very common test-statistic for the likelihood ratio is:

A(07x0bs) — —21n £(99‘$0b3)

£((9 ZEObS)

* \Where the difference between the null hypothesis in the numerator
and the alternative hypothesis in the denominator is that the null
hypothesis has a fixed value of a single (or more) of the 6 parameter(s)
whereas the alternative hypothesis fits/maximizes the parameter.

e The null hypothesis is named as such because it often has a parameter
set 1o zero

® For a normal distributed, i.e. gaussian, variable the
ikelihood ratio follows a y2 distribution,

* Npor = difference in dimensionality between the models

e Also requires that Wilk's Theorem is satistied (more later)
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2 Distributions

fA-(ilT) Xf
0.5

0.4 1

|
O D W N

0.3

0.2

0.1

*wikipedia




\Varianca nt Fctimatare - (Granhical

Md From Parameter Uncertainty
Lecture
method is used P;en he , CRE
uncfertainties aretnot ;ependent 5 7>§<\
on the correlation of the variables. o &(4

e The probability the ellipses of

COﬂStaﬂt InlL = lanax — a COﬂtaIﬂS él —Aél él él —|—Aél (91
the true point,6; and 6, is:

correct
a a -
(1 dof) (2 dof)
0.5 1.15 1
2.0 3.09 2
4.5 5.92 3
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Significance Values for Uncertainty
Limits from Likelihood Values

The probability the ellipses of \
Constant@ InL =2InL,u — @ contains

f The probability the ellipses of \ (

constant@n L=1nLu. — a,j contains

the true point, 8, and 6, , is: the true point, 6, and 6, is:

\_

J

So, where do the values of ‘a’ come from?
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a a _> a a -
O Multiply 1 do 2 do
(1 dof) (2 dof) by (1 dof) (2 dof)
0.5 1.15 to get 1 2.30
2.0 3.09 4 6.18
4.5 5.92 9 11.83




Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant 2InL =2InL, . —a contains

max

the true point, 6, and 6,, is: fu(), 2
o k=1
0.5 -
a a 0 —_ k=2
Gaof) | @aop | 77 L3
0.4 1
10 or — k=4
1 2:30 68.27% — k=6
20 or 037 k=9
o — k=
4 6.18 95.45% |
30 or
9 11.83 99.739%
e Because 2*ALLH is y? distributed,

the values of ‘a’ in the table above
correspond to

No = /O fi(z)da
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Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant2InL =2InL,_ . —a contains

max

the true point, 6, and 6,, is: fr(x) 2
- k=1
0.5
< d 0 -— k=2
(dof) | @dof | OO v Lo
0.41
10 or -— k=24
> 0.31 .
4 6.18 oo "
95.45% 0ol
30 or
1.
) 18 | 99.73% 0.1
e Because 2*ALLH is y2 distributed, | ,
the values of ‘a’ in the table above 0.0 0 1 9 3 1 5 6 7 g &

correspond to

No = /O fi(z)da
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Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant 2lnL =2InL,,,, —a contains

max

the true point, 6, and 6,, is:

k=1
£ < 0 — k=2
(Gdo) | @dop | 7 k=3
10 or — fe==4
1 2:30 68.27% — k=6
20 Or e— k=0

4 6.18 95.45%

30 or
9 11.83 99.73%
e Because 2*ALLH is y2 distributed, | ,
the values of ‘a’ in the table above 0.0 0 1 9 3 1 5 6 - g

correspond to

No = /O fi(z)da
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Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant 2lnL =2InL,,,, —a contains

max

the true point, 6, and 6,, is:

k=1
£ < 0 — k=2
Gdoh) | @dop | 79" k=3
10 or — k=4
1 230 68.27% — k=6
20 or e— k=0

4 018 95.45%

30 or
9 11.83 99.73%
e Because 2*ALLH is y2 distributed, 95.45% | ,
the values of ‘a’ in the table above 0-0 0 1 9 3 1 5 6 7 g &

correspond to

No = /O fi(z)da
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Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant 2lnL =2InL,,,, —a contains

max

the true point, 6, and 6,, is: fr(x) 2

XA': k—l
0.5 -
a a o e fo==9
Adof | @don | OO 7% » o fe3
1 ' — k=4
> 0.3 1— ',:fg
4 6.18 9504;’; T
e 0.2
30 or
9 1183 | o700, .

e Because 2*ALLH is 2 distributed,
the values of ‘a’ in the table above

0.0

correspond to

NO':/O fr(x)dx
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Significance Values for Uncertainty
Limits from Likelihood Values

* The probability the ellipses of
constant 2InL =2InL___—a contains

max

the true point, 6, and 6,, is:

k=1
a a o) o k::Q
Adof | @don | OO 7% 3
10 or — k=4
1 2:30 68.27% — k=6
4 -— k=9
30 or
9 11.83 99.73%
e Because 2*ALLH is 2 distributed, |
11 g —
the values of ‘a’ in the table above - g &

correspond to

NO':/O fr(x)dx
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Quick Note

* For any arbitrary percent threshold and degrees ot
freedom, the critical chi-squared value can be calculated
from the inverse survival function

e scipy.stats.chi2.isf(1-C.L. as percent/100, DoF)

e Fora 68.27% interval w/ 2 DoF
scipy.stats.chi2.ist(1-0.6827,2)=2.2958
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Exercise #1

* From the files posted on the class webpage for this lecture, use the In-likelihood
ratio and calculate the p-value of each data set for -1 < x < 1:

e The null hypothesis is the PDF from fi(x| p, @) = 1 + px + wx”

e The alternative hypothesis is £, (x| p, @, 7) = 1 + px + wx* — yx°

e Qut test-statistic is the likelihood ratio which can be expressed as —2ALLH which is
-2(LLH, — LLH, )

e |f Wilks's theorem is valid, then out test-statistics is y* distributed with the degree-of-freedom
equal to the difference in fit parameters between the two tested models in our likelihood ratio.

-LLH hO: 13432.1395523
-LLH hA: 13431.4054147
-2(LLH_hO-LLH hA) = 1.468275
p-value: 0.225618036865

-LLH h®: 13651.0055176

-LLH hA: 13495.0174946

-2(LLH hO-LLH hA) = 311.976046
p-value: 0.0
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Wilk's Theorem... Kinda

* As the number of data points approaches infinity, the In
ikelihood ratio converges to a y2 distribution it Hp is true

L(HO‘xobs)

A(@,:lfobs) — —21In ~
E(@]mobs)

e But there are regions where the gaussian, and therefore
Wilk’s and our use of y?, breaks down

* Low number of events where the probability switches from gaussian
to poisson

* Bounds on the model parameters, e.g. as n—infinity the parameter
does not smoothly vary, but has some truncation or discrete behavior

e Parameters that have a near-infinite variance
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Real World Application

e The tests so far have been within the realm of Monte Carlo
perfection and do not include any systematic uncertainties
that are found in real experiments. In practice, i.e. when
including systematics, 2 and p-values and other tests tend

to give better agreement between data and hypothesis/
simulation/tits than what is expected.

e Systematic uncertainties are almost always conservative, i.e. too big

e Fitting procedures try to make the model/simulation/etc. look like
the data as best as possible (maximum likelihood)

e Fitting procedures will use systematic parameters to ‘damp’
statistical under- and over-fluctuations
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Conclusion

e Hypothesis testing is good

e Take time to go back through previous class exercises if
you have not already

* Nice link about quickly interpreting distributions of p-
values

* http://varianceexplained.org/statistics/interpreting-pvalue-histogram/
e Nice material about the Neyman-Person lemma and the
oower of the likelihood ratio

* https://online.stat.psu.edu/stat415/lesson/26/26.1
e Original paper is at https://doi.org/10.1098/rsta.1933.0009
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Quick notes for next week lecture

* |ecture on Statistical Hypothesis tests

* We will be dealing with data in spherical projections

* |t's very useful to have a healpix package installed. Makes it trivial to
read in .FITS files, do equal steradian histogramming, work w/ data

on a spherical volume, etc.
e Also, we may get to learning about angular power spectrums which

rely on spherical harmonics. So have some package to deal with
spherical harmonics. Thankfully, HEALPix packages have this

functionality.

oskinen - Advanced Methods in Applied Statistics



