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Overview

* Much of what we have covered has been parameter
estimation, but using analytic or defined density
expressions

e Today we cover density estimates from the data itself

* The methods are regularly employed on finite data
samples that need smoothing or require non-parametric
methods to get a PDF

e | ast few slides of this lecture contain extended literature
for further reading
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Histogram

* The histogram is one of the most simple forms of a data-
driven non-parametric density estimator

e But, the only two histogram parameters (bin width and bin
position(s)) are arbitrary
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Histograms

* The histogram is one of the most simple forms ot a data-
driven non-parametric density estimator

* But, the only two histogram parameters (bin width and bin
position(s)) are arbitrary

e Histograms are not smooth, but if the underlying true PDF is smooth
then it would be good that our density estimator/function is smooth

* More dimensions requires more data in order to have a multi-
dimensional histogram which can match the true PDF

e \We can avoid some of these issues with density estimates
by using something more sensible
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Wish List

* For density estimates what do we want?

® non-parametric, i.e. no explicit requirement for the form of the PDF
e (Easily) extendable to higher dimensions

e Use data to get local point-wise density estimates which can be
combined to get an overall density estimate

e Smooth

e At least smoother than a ‘jagged’ histogram

* Preserves real probabilities, i.e. any transformation has to give PDFs
which integrate to 1 and don’t ever go negative

e The answer... Kernel Density Estimation (KDE)

e Sometimes it is “"Estimator” too for KDE
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Bayesian Blocks

e An alternative to constant bins for histograms is to use
Bayesian Blocks developed by J.D. Scargle

e Bayesian Blocks are very useful for determining time varying changes

e Covers many, but not all, wish list items
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Basics of Data Driven Estimation

e Fixed regions in parameter space are expected to have
approximately equal probabilities

* The smaller the region(s) the more supported our assumption that
probability is constant

e The more data in each region the more accurate the density estimate

e We will keep the region fixed and find some compromise;
large enough to collect some data, but small enough that
our probability assumption is reasonable

e For more thorough treatment of the original idea see the articles by
Parzen and Rosenblatt in the last slides of this lecture
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Example in 1 dimension

e Start with a uniform probability ‘box’ around data points:

K (u) 0.5, for |u| <1
Uu\) —
0, for |u] >1

e Notice that this kernel K(u) is normalized. The kernel is
always normalized!! The total width is 2*1, so the 'height

is 1/(2*1)

e For a 1D set of data (x), then u=x-h, where h is a distance
around a data point that has a non-zero probability

I/

e The value of h is set by the analyzer
e Here, the h=1
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KDE by pieces

e For 2 data points (x1 and x2) we can produce a data driven
orobability density P(x) using a box of total width=2 and

neight=0.5 centered at each data point

P(x)

Probability )
Contribution \ halfwidth=1 Probability

from X1 PN :\ // Cofntribution
rom Xo
K(x-n)=0.5 { HX1 H "




Final KDE

e Combine the contributions, normalize the new function to
1, and we have generated a data driven PDF.

Kernel Density
Estimator using a

box kernel
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Hyper-Cube

e Our extended ‘region’ definition is a D-dimensional hyper-
cube with lengths equal to 2h on each side

* We include all points within the hyper-cube volume via some

weighting scheme. This is known as the kernel (K) which is
for this KDE:

K (%) 0.5, Z; in region Ry
Lg) = — : :
0, x; outside region Ry

for some ‘R centered at point x4

e Sometimes you will see the kernel as K(u) where u is the ‘distance’
from x; to Xy
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Kernel Characteristics

* The integrated kernel always equals 1

+ 00
K(u)du =1

— OO

e |t ‘U’ is multidimensional, then so is the integration. But,
the integral is always 1.

e Even if the kernel is not transformed to be 1D, e.qg. K(x,y,z)
instead of K(u), the integral of the kernel is always 1.

/// [((gj7 Y, Z) dx dy dz = 1 3D incartesian coordinate x, y, and z

/ .« o / K(Sl, Cee Sk) dSl . dSk — 1] k-dimensions represented by s
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Visual Region

e Everything within the hyper- / /
cube is included with an |

appropriate value (also known
as a weight)

. . ® Xd
e For the density estimator we

need:

e To normalize by the total number / /
of events in the sample (N) 2h

e The kernel is always normalized, 2h

i.e. integral or sum equals 1

e The PDF estimator (Pkpg) is now

N — —

constructed from the individual o 1 r — Ip
P Tr) = — K

data points KkpB(T) N Z ( )

mn
e The illustration is the estimation

at a single point x4 € x
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Exercise 1

e Take the fixed length hyper-cube KDE out for a spin in 1D

e Using the following data [1,2,5,6,12,15,16,16,22,22,22,23]
for the finite data sample and h=1.5

e |f the total width is 2h then K(u)=1/(2h) or K(u)=0

* Because the length is 2h, to be in the ‘hyper-cube’ each
data point x; only needs to be h in each dimension from xq4

® Calculate PKDE(X=6), PKDE(X=10.1), PKDE(X=20.499), and
PKDE(X=20.501)

Code this by-hand, i.e. no external packages
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Exercise 1 Example

* Calculate the Pxpe(x=6) by taking all 12 data points and
seeing if they are within =h of x=6, i.e. in the range 4.5 to

/.5.
e \We include the data point at x=6 in the KDE

LR R 52 (52 k(5 (5 (552

1 1
= 5 [0+0+3+3+0+04+0+0+0+0+0+0
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KDE Comments

e The function K() is known as the kernel, and h is the

bandwidth

* |arger bandwidths mean more smoothing, but it can

remove real features

* Smaller bandwidths will approach the true PDF better, but
need lots of data points otherwise they are ‘bumpy’

e The fixed window KDE is similar to a histogram, but has
better support for local densities
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Hyper-Cube

* We could use the hyper-cube kernel to construct a
probability density, but there are a few drawbacks to this
kerne

* We have discrete jumps in density and limited smoothness

* Nearby points in x have some sharp differences in probability
density, e.g. Pxpe(x=20.499)=0 but Pxpe(x=20.501)=0.08333

e All data have equal weighting and contribution regardless of
distance to the estimation point

e So |let’s switch to a different kernel with weights that
decrease smoothly as a function of distance from the
estimation point
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Gaussian Kernel

* The generic KDE expression remains similar, e.g.

—

N
— 1 r — n
Pxpg(Z) = NZK(x hx )
n—=1

e The kernel is now:

K(Z,0) = e 207

V2o

* The kernel at each data point now contributes a non-zero
probability from [-e0,+e0] smoothly with decreasing weight
as a function of distance

e Each data point and corresponding kernel integrate to 1 over the
whole parameter space

oskinen - Advanced Methods in Applied Statistics



Exercise 2

e Redo exercise 1 using the new Gaussian kernel
* For the gaussian width use 0=3

e Calculate the KDE two ways:

e \Writing software where you code the gaussian function

e Using an external software package

e Plot the density estimate Pxpe(x) over the following range
of -10 < x < 35

* |f you have time, plot the individual kernel contributions
too
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Exercise 2 KDE plot

Gaussian Kernels (0=3.00)
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Compact Kernel

* The gaussian kernel
contributes across the whole
space (infinite support), but
sometimes we want
compact support, I.e. zero
outside of a specific range

* Maybe some parameters are
constrained to be non-negative

* Maybe, we know the physical
system has either boundaries
or effective cut-offs

e A common compact
support kernel is the
Epanechnikov kernel
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Exercise 3

* Redo exercise 2 using the Epanechnikov kernel with a
bandwidth that you choose

* In a nicely formatted table compare Calculate Pxpe(x=6),
PKDE(X=1O.1), PKDE(X=20.499), and PKDE(X=20.501) between

the 3 different kernels; Parzen-Rosenblatt, gaussian, and
Epanechnikov

* Use either your by-hand(s) version or external package
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Kernel Bandwidth

e Every KDE is, unfortunately, strongly influenced by the
kernel bandwidth, which is a user defined free parameter

Gaussian Kernels (0=0.20)

p(x)

Gaussian Kernels (0=7.00)
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Bandwidth Selection

* An analytic approach to bandwidth selection is to choose a
bandwidth which minimizes the mean integrated square

error (MISE)

e But analytically this requires some known tform ot the
underlying distribution

e Assuming that the underlying distribution is gaussian, the
optimal bandwidth is

A

O standard deviation from data

~ ~ANT—1/5
h ~ 1.060N / N number of data points
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Bandwidth Selection Non-parametric

e |nstead of using a known function we can use subsets of
the data as cross-validation of the kernel bandwidth

ISE(fy) = / (aly) — £()

/ dy—2/fh dy+/f(y)2dy

* This can be shown to converge to a least squares cross-
validation (LSCV) expression as

LSCV (h) = / (fr(y))*dy — % Z fi(ys)

e The expression f—i(y:) is the kernel estimator from the data
omitting the data point y;which is also known as the
"leave-one-out” density estimator

*httDS://Droiecteuclid.orq/euclid.ss/ 1113832723
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KDE in 2D, and more

e While the previous examples and work were for 1-

dimension, the kernels work just fine in additional

dimensions

* No escaping the curse of dimensiona

e Similar to all other multi-dimensional
is difficult to visualize

ity :-(

oroblems, anything beyond 3D

e Kernel bandwidths do not have to be the same in each

dimension

e Either specify the bandwidth in each dimension, or

e Transform the parameter space(s) to be uniform for a given

bandwidth
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Exercise 4

* There are many online tutorials covering different 2D

density estimation problems in R, python, MatLab, etc.

e Eruption of "Old Faithful” geyser

e Rendering of text and numerals

e Spread of diseases

e Geographical population densities

o After working t
500 pseudo-ex

nrough your own particular choice, use the

periment bootstrap from Lecture

"Parameter Estimation and Contidence Intervals” exercise
Tb to produce a 2D KDE

* Because the LLH method gives precise contours, you can compare
the contours from the KDE
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The End
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More KDE comments

* The kernel is symmetric about each data point

* Makes sense, because the region near the data point should have a similar
probability for a narrow (enough) bandwidth

e Kernel symmetry is not technically a requirement, but in practice symmetry
is often desirable because then the average of the kernel is centered on the

data point
 The kernel density estimator PDF is often used for Monte Carlo

sampling

* E.g. N-body simulations (galaxy formation, astrophysical large scale
structure, disease propagation in an ecosystem, etc.) can take months to

generate 200 data points across 3 dimensions or parameters. Real data is
much, much larger. In order to use our N-body PDF, we can sample from a

smoothed PDF from a KDE.
e Because KDEs require ‘subjective’ input, clearly state the kernel,
bandwidth, and any optimization from an analysis
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Further Info

e Fixed kernel width window, Parzen-Rosenblatt window

* Parzen (http://www.jstor.org/stable/2237880)
e Rosenblatt (http://projecteuclid.org/euclid.aoms/1177728190)

* Nice list of various kernels at https://en.wikipedia.org/wiki/
Kernel (statistics)

ad v

e Very nice article on kernel bandwidth selection review
https://projecteuclid.org/euclid.ss/1113832723

* Collection of other cross-validation techniques https://
cran.r-project.org/web/packages/kedd/vignettes/kedd.pdt
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Further Info (cont.)

e Variable bandwidth kernels
e 7. I. Botey, et al., Kernel Density Estimation via Diffusion, Annals of
Statistics, 38 5, 2916-2957 (2010).

e [.S. Abramson, On bandwidth variation in kernel estimates—A
square root law, Annals of Statistics, 10 4, 1217-1223 (1982).

e Any other suggestions?
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