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Statistical Hypothesis Tests

® Typical problem in physics and astronomy:

You have collected data with your experiment or observatory
and want to test a theory (signal hypothesis H;)?

=» How can you judge if the hypothesis is correct/wrong?

=» How does the alternative hypothesis (null hypothesis Hy) look like?
=» How confident can you be that your conclusions are correct?

® |n most cases there is a chance that your decision is wrong:

X You decided that Hj is correct, but it is actually wrong? (type | error)

X You decided that Hj is wrong, but it is actually correct? (type Il error)
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Statistical Hypothesis Tests

® A statistical hypothesis test is based on a quantity called test
statistic that allows to quantify the degree of confidence that your
decision was right or wrong.

® A useful test statistic:

® is sensitive to the signal hypothesis Hy (that's a must!)

¢ is efficiently calculable (e.g. fast calculation on your computer)

® has a well-known behaviour for data following the null hypothesis Hy
(more on this later)
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Test Statistic Distribution
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In a hypothesis test we have to choose a critical {-value to either
reject or accept the hypothesis.
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Test Statistic Distribution

* significance (v) :
Probability that background would have created outcome with same ¢
or larger (type | error):

a= /dtpo(t) = “p-value”
t

® Note: It is a convention that { increases for a more “signal-like”
outcome. If not, just define a new test statistic t’ = —t.

® power of test (1 —f) :
Probability that signal would have created outcome with same f or less
(type 1l error):

fobs

B= / dt pr(t)

—0o0
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Statistical Hypothesis Tests

=» A good statistical test will have good “separation” of pg and p; to
allow a minimize type /1l errors. Separation from background allows
to quantify significance of event excesses:
® discovery (in particle physics) :

w~57x1077(“50")
® evidence (in particle physics) :
w27 x 1074307

® Often, we want to estimate the performance of a statistical test prior
to a measurement by simulations. We can determine this by tuning
the signal strength, e.g. the lceCube experiment uses:
® discovery potential:

¥ ~57x10"7(“5¢") and p=05

® 90% sensitivity level:
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Today's Program

® Today, we will explore various examples of hypothesis tests and test
statistics:

® Maximum likelihood ratio test

® This is the most powerful test statistic (Neyman-Pearson theorem).

® Allows to quantify background distributions pg (Wilks theorem).

® We will study the applicability of Wilks theorem by a numerical example
(exercise 1).

® Discussion of trials factor corrections.
® Kolmogorov-Smirnov test & Auto-Correlation

® We will introduce this test by the cumulative auto-correlation function of
event distributions on a sphere.

® This test allows to study hidden structure in event distributions, e.g.
deviations from an isotropic distribution.

® We will generate Monte Carlo data following isotropic and simple
anisotropic distributions and study the performance of the test (exercise 2).
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Today's Program (cont.)

® Angular power spectrum (optional, will not be covered during lecture)

® The power spectrum C, can be used as a test statistic that allows to study
distributions of data (large number of events, temperature flucuations
(CMB),...) on a sphere.

® Brief introduction of spherical harmonics Y, as basis functions on a
sphere (exercise 3).

® Introduction of the two-point angular correlation function and its relation
to the power spectrum.

® Introduction of the power spectrum.

® Extraction of power spectra from Monte Carlo data and background
(exercise 4).
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Part |
Maximum Likelihood Ratio
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Recap: Maximum Likelihood Ratio

® Consider data (Nt “events”) distributed in Np;,s bins.
® Question: Is there an excess or deficit in the data?

1200+
1150+
<« excess?

1100

1050

number of events

1000

950

«—deficit?
0 20 40 60 80 100
bin number
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Recap: Maximum Likelihood Ratio
® Likelihood for data vector x and parameter vector u:

Nbins ‘uxf o
L) = T Lo

el ;!

=

Poisson distributions
® Null hypothesis ( “no signal™)
Hi = Hpg = const

® Signal hypothesis (“signal (excess or deficit) in bin 1")

[ % .
Aubg 2 S 1 S Nbins

I Important note: ‘uf;g # Hbg

Ahlers & Koskinen () Statistical Hypothesis Tests March 2021 slide 11



Maximum of Null Hypothesis

¢ for convenience : likelihood — natural ‘log-likelihood’ (LLH)

Nbins
InL(ux) = ) (xilnp; —p;) +  const

i=1 independent of u

® In general, maximum of LH (or LLH) can be derived numerically.
This example is easy enough to solve analytically:

® maximum LH value determined by:

dint o % (x _1>
dpipg i=1 \Mbg

¢ maximum flp, obeys:
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Maximum of Signal Hypothesis

® For the signal hypothesis we have to find the maximum w.r.t. signal
and background strength:

din L _ 0 and din L _

0
dyf;g dpisig

® Signal term pg is (by construction) only present in bin 1.

° maximum {fif, flsig} obeys:

.« _ Nt —x1
by =
8 Nbins -1

‘ﬁ . _ xl ‘ﬁ* _ xlelnS - NtOt
s1g — " Mbe — T 7 14
8 & Nbins -1
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Maximum LH Ratio

® test statistic A is defined as maximum likelihood ratio:

L(x|frog, 0)

Ax) = —2In
) L(x |ngr]/‘51g)

® after some algebra using the solutions of flpg, ﬁ;g, and flsig :

/\(x) =2x11n ( Nbins Niot — X1 ) (1)

Npin
4+ 2(Niot — x1) In ( —_—
N, tot ) ( ot 1) N; tot Nbins -1

® Note: The first (or second) term in Eq.(1) vanishes in the special case
X1 = 0 (OI’ Ntot — X1 = 0)

® bonus exercise: Derive flng, fly,,, fisig, and Eq.(1).
=» exercise 1 : Let's explore the behaviour of Eq.(1).
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Exercise 1

® Generate Monte Carlo data assuming Ny, = 100 bins.
® Consider two categories:
® three background cases:
choose jigig = 0 and ppe = 0.1, 10, or 1000.
® two signal cases:
choose yl’;g = 1000 and signal in first bin (i = 1) with psig = 100 and 200.
® For each case generate many (10°) pseudo-experiments, i.e. trials,
x = {x1,...,xn,,,, } of Monte Carlo data and calculate
N ins .
7\<x1,Ntot = i:bl xi) :
Ny, Npins Niot — X1
/\:2x11n(msx1)—|—2Ntt—x1 11’1( ms_> -
Ntot ( ° ) Ntot Nbins -1
[ ]

Make histograms of the A values to estimate the null and signal
distributions.
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Exercise 1: Background Cases

simulation (10° samples)

105
— X1 distribution

10 m Noins = 100 / Hsig = 0/ y{;g =0.1

103

number of samples
p—
(e}
N

10!

100

-1 | .
10 0 5 10 15 20 25

test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Exercise 1: Background Cases

simulation (10° samples)

105

— X1 distribution
- Npins = 100 / Hsig = 0/ .”ljg =10

number of samples

10 15 20 25
test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Exercise 1: Background Cases

simulation (10° samples)

105

— xi distribution
m Noins = 100 / ptsig = 0 / py = 1000

number of samples

10 15 20 25
test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Wilks Theorem (1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By 8. S. WiLks

(.))

Theorem: If a population with a variate z is distributed according to the probabil-
wy function f(z, 6, 6z - - - 63), such that optimum estimates 8; of the 0; exist which
are distributed in large samples according to (3), then when the hypothesis H is
truethat 0; = 6o; 2 = m + 1, m + 2, . .. h, the distribution of — 2 log \, where \
13 given by (2) is, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.

bonus exercise: Try to find this publication online.
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Wilks Theorem

® Brief reminder:

® Let x be data that follows a probability function f(x|01,...,0y).

® The corresponding likelihood function for the null hypothesis
Lo(61,...,604]x) has a maximum at 0y, ..., .

® The correspondmg likelihood function for the Aalterna}ive hypothesis

L4(61,...,0,|x) has a maximum at él, oy B0y_q, Oy, for m > n.
® Wilks theorem:
For a large number of samples x, the distribution of the test statistic

Coan Lol Bl
ﬁA(91;-~~/9m71/9m’x>

approaches a )(% distribution with k = m — n in the limit of a large
number of events, Niot.

Ahlers & Koskinen () Statistical Hypothesis Tests March 2021 slide 18



Quick Example

® For large Niot we can apply Wilks theorem and assume that the
background distribution follows a X% distribution.

p — value = / dax?(x) =1 — erf(y/Agps/2)

)\obs

® Assume Niot = 10°, Npins = 100 and first bin contains:

® 1100 events : maximum likelihood value Agps >~ 9.8
Wilks theorem: p ~ 0.0017

® 1150 events : maximum likelihood value Ag,g >~ 21.7
Wilks theorem: p ~ 3.2 x 10~°

® 1200 events : maximum likelihood value Ag,g >~ 38.0
Wilks theorem: p ~ 7.1 x 10~1°

=» the 50 discovery threshold corresponds to x; >~ 1162 events
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Exercise 1, cont.: Signal vs. Background

simulation (10° samples)

10°

_ X1 distribution

mn Nbins = 100 / Jisig = 0 / p, = 1000
m Noins = 100 / jisig = 100 / pif, = 1000
:mp Noins = 100 / jisig =200 / pif, = 1000

10*

10°

102

10!

number of samples

100

-1
107 20 40 60 80 100

test statistic A

for python code see : maxLH_produce.py & maxLH_show.py
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Sensitivity and Discovery Potential

® performance of the test

® sensitivity level:
defined as the level of jjg such that 90% of the signal distribution is
above 50% of the background distribution

® discovery potential:
defined as the level of g such that 50% of samples have a chance

probability of 5.7 x 107 to be generated by background only

=» This is a challenge for brute-force background simulation — you
need Ngamples > 107 for accuracy!

® However, Wilks theorem allows to extrapolate the background
distribution very easily:

=» For x1 distribution we know that the “5¢" level corresponds to:

)\threshold = 52 =25
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Trial Correction

® What happens if we want to find a signal not just in bin 1 but in any
of the Npins bins?

® We can simply repeat the test over all bins and identify the bin with
minimum p-value p.

® Problem: There are many bins ( “hypothesis”) and we have to
account for the fact that there can be a chance fluctuation in the local
p-values.

® If Npins are independent of each other (as in our example) then we can
define a post-trial p-value as

ppost =1- (1 - P*)Nbi“s x~ Nbinsp*
————

background probability

® Number of independent “trials”, Niia1s, is often difficult to estimate.
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Example: lceCube Neutrino Data

IceCulz)e Pre].iminar{i
i 300%

I I Galactic
0 2 ! ’
— l()gm(plurnl)

“All-sky” point-like source search:
each location tested for an excess!
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Example: lceCube Neutrino Data

1.0 . T Tt -
: — Expm’inu‘ut:ﬂ Value
: — l’r;(‘u(lo—Explm’im(‘u‘m
0.8 4 I 1 ] Noi [
! — Plocal - (1 = Proca)’
1 1 1
y — [
é 0.6 - | E p[)[)&l - 0?00 L
; [ 1 1
5 I 1 1
| I 1 1
T 04 ; : | r
| i TeeCube Pl'(:lilllillzll'l\’
1 1 1
() j 1 i 1
al o g 130 I
1 4 1
1 1
1 1
0.0 . L T =
4 5 6 7 8 9
- 1“5—’,1[)(])](,“\1)

® Trial factor: Nigjais ~ Npins ~ O(1000)

® |ceCube procedure: choose maximal pjycq) in sky map as a new test
statistic and compare against maximal pjycq1 of randomly generated sky maps
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Part Il
Kolmogorov Smirnov Test & Auto-Correlation

Ahlers & Koskinen () Statistical Hypothesis Tests March 2021 slide 25



Example: Arrival Direction of Cosmic Rays

Auger 2014

E>57EeV (x)/TA 2014 E > 57 EeV (+)

Equatorial

Anisotropies in the arrival directions of ultra-high energy cosmic rays
(data from the observatories Telescope Array (TA) and Auger).
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Mini-Exercise: Isotropy on a Sphere

® Qur data and Monte Carlo has been analyzed in mostly linear
cartesian coordinate reference frames.

® When switching to spherical coordinates we moving to azimuth and
zenith angles which are not uniform in (x,y).
® |sotropy is ‘uniform’ randomly dispersed data on the surface area: 47
steradians for a sphere.

® QOur normal linear sampling in x and y (or even linear in azimuth and
zenith) will overpopulate the poles.

® Find a way to generate Monte Carlo uniformly on a surface in spherical
coordinates.

Spherical Area Projection

Ahlers & Koskinen () Statistical Hypothesis Tests March 2021 slide 27



Auto-Correlation

® So far, we have only looked into local excesses in individual bins.

® This method was not sensitive to the correlation between events, e.g.
in neighbouring bins or in small clusters.

® Consider Niot events distributed on a sphere with position n; (unit
vector).

® For two events with label i and j (i # j) we can define an angular
distance:

COSs (Pij =n;- n]-

® The cumulative two-point auto-correlation function is defined as

2 Niot i—1
A} )= o= g O 08 @)

with step function ®(x) =1 for x > 0 and ®(x) = 0 for x < 0.
=» This expression counts the pairs of events within angular distance ¢.
® Note : The step function ©() is sometimes referenced as the Heaviside
function.
Ahlers & Koskinen () Statistical Hypothesis Tests March 2021 slide 28



Exercise 2: Event Distributions

® Generate Monte Carlo data of events on a sphere for two categories:
® jsotropic distribution:
® generate Niot events randomly distributed on a sphere
® e.g. python module healpy allows for pixelised sky maps with equal pixel
area
® Derive the two-point auto-correlation function for the distribution.
® What distribution do you expect for a large number of events?

® biased distribution (bonus exercise):

® generate Niot events following a non-isotropic distribution

® e.g. only sample events within a limited azimuth or zenith range, or events
following a dipole distribution

® How does the auto-correlation function compare to that of the isotropic
distribution?
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Exercise 2: Isotropic Distribution

simulation (Niot = 10)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Nt = 100)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Nt = 1000)

R

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (10 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (100 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (1000 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Large-N limit

® |n the limit of a large number of events, Ny the cumulative
distribution is just given by the relative size of the solid angle AQ) with
half-opening angle ¢

. AQ)
aim_C{nik, @) = Ciole) =

® solid angle
AQ =27(1 —cos )

® jsotropic distribution:

1
Ciso(9) = 5(1 —cos ¢)

I Note: an isotropic distribution of a finite number of events will
always show deviations from Cjso.
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Exercise 2: Anisotropic Distribution

simulation with dipole anisotropy (10 events)

for python code see : twopoint.py
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Exercise 2: An

cumulative auto-correlation C(¢)

Ahlers & Koskinen ()

isotropic Distribution

simulation (10 events)

1.0

o
®

o
=N

<
'S

o
)

— dipole
— isotropic

00, 50-075-0.50—025 0.00 025 050 0.75 1.00

cos ¢

for python code see : twopoint.py
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Kolmogorov-Smirnov (KS) Test

We want to define a quantity that is
a statistical measure for the difference

between the empirical distribution
and background distribution.

Area between two curves?

[ dcosgle(ng, g) -

Or, more general (L? norm)?

[/dCOS(p IC({ni}, @) — Ciso(9)) |

(¢
=}
@

o
=N

o
=

CiSO(§0)|

cumulative auto-correlation C(¢)
I
N

simulation (10 events)

AN — dipole
isotropic
— K§ =021

==

Kolmogrov-Smirnov: p — co.

Ahlers & Koskinen ()

Statistical Hypothesis Tests

.00-0.75-0.50—0.25 0.00 0.25 0.50 0.75 1.00
cos @
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Kolmogorov-Smirnov (KS) Test

® |n general, given two cumulative probability distributions,
0 <A(x) <1and0<B(x) <1, we can define the
Kolmogorov-Smirnov test as:

KS = sup,A(x) — B(x)|
¢ Cumulative auto-correlation function C({n;}, ¢) follows the probability
distributions to find a pair of events within an angular distance ¢.

® We will use this in the following to define a test statistic, that
describes deviation from an isotropic background distribution:

KS({ni}) = sup,|C({n;}, ) — Ciso(9)]|
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Kolmogorov-Smirnov (KS) Test

® Plan: For a fixed number of events Nt we can simulate isotropic
event distributions (null hypothesis) and their KS values (test
statistic).

=¥» Separation of KS for observed data from background distribution
allows to estimate significance of an excess.

® number of event pairs increases as

1 2

Npair = ENtot(Ntot - 1) & Ntot

X Cumulative auto-correlation function in Eq. (2) becomes numerically
inefficient.
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Kolmogorov-Smirnov (KS) Test

simulation (10* samples)

10*
w isotropic / Niot = 100
[} dipole / Ntot =100

103_

102_

101_

number of samples

100.

-1
100.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

KS

for python code see : KS_produce.py & KS_show.py
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Part 1lI
Angular Power Spectrum
(optional)
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Example: Temperature Fluctuation in CMB

Temperature anisotropies of the cosmic microwave background
(CMB) observed by the Planck satellite.
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Example Temperature Fluctuation in CMB

Multipole moment, ¢
2 10 50 500 1000 1500 2000 2500

6000

5000

4000

3000 f

2000

1000 |

Temperature fluctuations [ p K2]

o0° 18 1° 02° 0r° 0.07°
Angular scale

The angular power spectrum C, of the temperature fluctuations.
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Auto-Correlation for Large Niot

® In the Kolmogorov-Smirnov test we observed that for large Niot the
number of pairs increase as N2, and the calculation can become very
inefficient.

® |n large-Niot limit we can approximate the event distribution by a

smooth function
An(Q))

O)= 1 —_—
g( ) Nb;ngtotAQ

® On a smooth distribution we can define the two-point
auto-correlation function as

2(9) = [0 [ d02d(n(Q1)n(02) — cos p)g(Q)g(€:)

® Note: This is the differential version of cumulative auto-correlation
function.
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Auto-Correlation for Large Niot

® comment 1 : cumulative two-point auto-correlation function:

1
— [ deosg'e(y))

cos @

® comment 2 : isotropic distribution g(Q)) = 1/(47m)

1
é((P) ; E — 1so / dCOS(P 5(1 — COS q))

cos @

1 follows from:

(v)

o /[
S((Q)n(Q) —cos ) =2 ) Y Py(cos ¢) Y7, ()Y (Q2)

(=0m=—1
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Spherical Harmonics

® Every smooth function g(6,¢) on a sphere can be decomposed in
terms of spherical harmonics Y,:

Z Z aémyﬁm 9 (l))

=0m=—¢

® coefficients given by:

n= [ 40Y;,0,9)3(6,¢)

=» for real-valued functions:

Ay = (=D)"ar—m
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Spherical Harmonics

® The low-¢ components are

® /=0: monopole Yoo =1/v4rn
e /=1: dipole

/3 13 . [3 .
Y10 in cosf Yqi 4 e sin fe Y11 e sin e

® (=2 : quadrupole, { =3 : octupole, etc.

® angular power spectrum:

1 ¢ )
Cr = mmgé ||

® simple relation to ¢ via Legendre polynomials Py:

(g) =2m ;(2«4 +1)CiPy(cos ¢)
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Exercise 3

e visualize spherical harmonics for various combinations of ¢ and m
® for example, in python use healpy:

nside = 128
npix = H.nside2npix(nside)

LMAX = 4*nside
almsize = np.intC((LMAX+2)*(LMAX+1))/2)
alm = np.zeros(almsize,dtype=np.complex)

1=10
m =4

index = H.sphtfunc.Alm.getidx(LMAX,1,m)
alm[index] = 1.0

map = H.alm2map(alm,nside, 1 max=LMAX)
mapmax = max(max(map) ,max(-map))
maptitle = r'$\ell= " + str(l) + '$ \& $m= " + str(m) + '$'

H.mollview(map,cmap=cm.RdBu_r,max=mapmax,min=-mapmax,title=maptitle)

H.graticule()
show()
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Exercise 3 : Example Map of Spherical Harmonic

-1.05756 1.05756

for python code see : Ylm.py
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Power Spectrum

simulation (10° samples)

10%¢

= isotropic / Niot = 100
m dipole / Ntot =100

number of samples

0.10 0.15 0.20 0.25 0.30
test statistic C;/Cp

for python code see : C1_produce.py & C1_show.py
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Power Spectrum

® |n general, we want to judge if a distribution of events shows evidence
for an excess in the power spectrum compared to background
expectations.

® Strategy: Generate background maps from data via scrambling:

a) choose two random bins i and j
b) interchange the events in the two bins
c) repeat from a) until Ngcramble => Npins

® The distribution of the power spectrum of these maps gives an
estimate of the median and variance of the background power.

® Expected median noise level:

1
N=—
Ntot
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Exercise 4

® | oad the two data files truemapl.fits and eventmapl.fits
(the second file is a bin-wise Poisson sample with mean given in the
first map)

® Display the maps

® Determine and compare the power spectra C;/Cy of the two maps,
e.g. with HealPix or healpy

® Generate a background map via data scrambling, as described on the
previous slide.

® Compare the power spectrum of the event map to the expected noise
level 1/ Niot.
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Exercise 4 : Template vs. Event Map

template map (Poisson mean per pixel)

2.36559 3.58579

for python code see : powerspectrum.py
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Exercise 4 : Template vs. Event Map

data map with 147473.0 events

.

0 13

for python code see : powerspectrum.py
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Exercise 4 : Power Spectra

103 8 — noise (90% central)
o .1 ol
S ./Ntt
~ e input map
) e event map

_ s
g 1074 s
O
g, °
2l °
$ .o
z 1075t ° o ° °
& ...... ® = ) A ) . L ey areeeEe
o
.g o o
i -6 ® o
g 10 . ®
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for python code see : powerspectrum.py
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Example: HAWC Anisotropies
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Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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Example: HAWC Anisotropies
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Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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