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How do we know if our binned data is anomalous?
> Jason has hinted at the idea of scanning the binned data using all possible combinations 
of bin mergers, e.g.:

*Asadi 2017

animation by 
A.Monteux 

https://arxiv.org/abs/1707.05783
https://ilmonteux.github.io/LHC_rectangular_aggregation/
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What can we get out of the scan?
> After such a scan, one way to proceed is to take just the most anomalous bin (i.e., the one 
with the highest pull). An example from high-energy physics:

the CMS experiment at CERN found this to be 
the most anomalous bin merger

the “abnormality” of the whole data grid is then 
dependent on the “p-value” of this particular excess

*Asadi 2017

the rest of the information is lost, plus now we need 
a model to explain this excess at this particular 
location…

https://arxiv.org/abs/1707.05783
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What do we do to avoid a “single template” search?

> We want to go away from digging into the p-values of some very specific signal shapes, 
which just happen to be “most anomalous”; 

> To do so, we need to incorporate the information on all bin mergers, not just the most 
anomalous one; 

> Exercise 2 will show us the way.
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Exercise 2
> Here, we will be looking at the following 1D (“1x8”) data:

> The goal: find all the bin mergers and quantify their pulls, for both the “fluctuated 
expectation” pseudoexperiments and the measured signal.

expectation (*) observation (**)
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Exercise 2

> For the single observed dataset (**), calculate the pulls for the existing bins as done in Ex.1, given 
the single expectation (*). 

> Then, go through “bin merging” and find how many mergers (NX) there are with cumulative pull 
(significance) above X=2,3,4 σ.  

> Also, generate 1000 expectation pseudoexperiments from (*) and repeat the above calculation for 
each pseudoexperiment (assume Poisson fluctuations). 

> Histogram NX outputs for the pseudoexperiments as well as the observation (**). Where does the 
observation lie with respect to the fluctuated expectations? Is our observation anomalous?

Tasks:

observation (**)expectation (*)
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> I get the following pull values for the observation:

Exercise 2 “solutions”

> The number of bin mergers above 2,3,4 σ: N2 = 10, N3 = 7, N4 = 2 (including 1x1 bins).

> Fluctuated background distributions:

Solid lines = distributions from the 1,000 
fluctuated expectation pseudoexperiments; 

Dotted lines = results obtained for the 
observation (**).

So, is our observation anomalous?

(**)
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Exercise 2 “solutions”

> From my 1,000 pseudoexperiments, there is a… 
 
1.4% chance to get the N2 value as high as the 
observed or larger; 

0.2% chance to get the N3 value as high as the 
observed or larger; 

0% chance to get the N4 value as high as the 
observed or larger (such large values just never 
made it into the pseudoexperiments). (Nx)
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So… Multiple p-values per observation?

> No. It is not desirable to have many p-values like this. We want to have just one, 
irrespective of the “σ threshold” that we set. 

> We see that this problem of “multiple p-values” appears already in 1D when we try to 
characterize the distribution of merged bins with different pulls.  

> It won’t get easier as we go to higher-dimensional data… and we still want a single 
value for the test statistic!
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Moving to 2D data…
> The more dimensions/bins in each dimension we have, the more time the merged bin 
scans will take. 

> The bins will also have more “properties” (location in each dimension, extent in each 
dimension, overall pull,…), and we want to keep the useful ones to define the test statistic.

Our approach:  

keep track of the merged bin 
area in addition to the pull
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Moving to 2D data…
> The more dimensions/bins in each dimension we have, the more time the merged bin 
scans will take. 

> The bins will also have more “properties” (location in each dimension, extent in each 
dimension, overall pull,…), and we want to keep the useful ones to define the test statistic.

Our approach:  

keep track of the merged bin 
area in addition to the pull

area 9 area 4

area 4

area 3
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How do we summarize our pull/area findings?
> Once we have measured the areas and the pulls of the merged bins, we can put them 
in a 2D histogram. For a 10x10 grid, bin areas go from 1 to 100;

> An example of what we would get for a fluctuated background vs signal:

background

signal
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How do we summarize our pull/area findings?
> The “signal” in this case is a 2x2 box (cumulative pull = 4σ) injected in the middle of our 10x10 grid 
with a flat expectation of a 500 in each bin.
> We can see that this histogram looks very different from the background, so our summary of the 
bin features was useful. How do we produce a single test statistic value though?

background

signal
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How do we summarize our pull/area findings?
> We will define a score test statistic, SX, as the number of outliers that lie outside of a 
certain confidence level X, which we evaluate from the statistically fluctuated expectation.

background

signal

> Example for X=95%:
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How do we summarize our pull/area findings?
> We will define a score test statistic, SX, as the number of outliers that lie outside of a 
certain confidence level X, which we evaluate from the statistically fluctuated expectation.

background

signal

> Example for X=95%:

- a single number for 
both BG and signal!
-it picks up the signal-
ness well, at least for 
this realization of the 
signal.
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Why the 95% level?

> No particular reason; choosing the 95 in “S95” is completely arbitrary. We have run tests 
for a reasonable range of CLs and noticed a negligible difference between the true 
positive vs false positive rates for the different choices of CL.

> Also, the performance of this test statistic (as any other) will depend on the type of 
signal. We can’t optimize for the CL beforehand because we don’t know (and don’t want 
to know) what we’re looking for in the data.

> The most beautiful thing is… we can test it!
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Exercise 3
> We have put online some example code for running the score test statistic.  

> The task of the exercise varies depending on how involved you want it to be. The 
options are: 

Option A. Download the entire code package, along with the pre-generated data (~200 
MB), and run the score test on that pre-generated data as explained in the example 
notebook, examples/score_test.ipynb. 

Option B. Run the score test from /utils/score/score_TS.py using the pre-generated 
data as the background (expectation), and inject your own signal (observation).

Option C. Code up the score test statistic yourself, generate your own expectations and 
observations, and compare the distributions of SX for different X. 

 

https://alumni-my.sharepoint.com/:f:/g/personal/xdn365_ku_dk/Egfw7-cgQmJLj1jeE94L-XwBm9oK2TtQ8vkOe964pnfsMg?e=JFGDJq
https://alumni-my.sharepoint.com/:u:/g/personal/xdn365_ku_dk/ERJ1fTBoDplPtDbJAUd-lTYBBbP8RKnkfIJUjdLmGEb6UA?e=RFkGpi


Exercise 3 “solutions”
> The distributions of the scores that I get from fluctuating the flat background map and the 
2x2 4σ signal: 
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Exercise 3 “solutions”
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> Depending on where we “cut” the score (assuming that the “signal” is everything above), 
we will get different true positive vs false positive rates. This is summarised in the ROC 
curve:



Exercise 3 “solutions”
> Depending on where we “cut” the score (assuming that the “signal” is everything above), 
we will get different true positive vs false positive rates. This is summarised in the ROC 
curve:

Remember: this is for our toy signal

and will look different for other 
signals. 

However, the method itself makes 
no assumption about the signal 
shapes, locations, strengths, etc.

20



Extra material
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A different view of the binned data: Ising model†

deviations from the expectation [σ]

spin-spin interaction range

Idea: find the configuration of spins that minimises the 
Hamiltonian and use Hmin as a test statistic.

si = +1(↑) or -1 (↓)

† — Matchev et al. (arXiv:2003.02181)
22

https://arxiv.org/pdf/2003.02181.pdf


Comparing the different test statistics: ROC curves
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the most sensitive method to date; 
 
the test statistics we derived, which 
beat the most sensitive method to 
date;  

K is a variation of the Ising model 
Hamiltonian, which we will not go into.


