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The article
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with ease and efficiency by a renormalization g
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The error on the mean

* Assuming iid
* Assuming normal distribution
* Central limit theorem
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The curse of correlation

* Many of statistical method depends on assuming iid or just dependence

« Cannot determine parameters or statistics as it depends on other
parameters

« Simulations and experiments of physical system normally generate data in
a finite time-series

* Correlated through last position
* Optical tweezer as an example
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Optical tweezer
* Browian motion in x and y direction

* Hookian spring
o .X:']+1=C’x]+Ax]
. C = e27£cht

« Stationary state
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2 dimensional optical trap
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The problem and a solution

* To estimate the error on the average of correlated data
* Correlate function based estimators

« Vij= (%5 xj> — <xi><xj> =Y: ‘

- t:li_jl <CO+221T_1(1_1)
o“(m) ~ — z
' N—-2T—1 4
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o= (X — %) (X4, , — %), ®)
n—t1t k=1
is a biased estimator; its expectation value is not y,, but
(C,) =Y _0,2(m) +An (9)
where
A‘=2(li _ 1 nit)liy‘”, (10)
n =1 n—1t =1/ n = N

However, if the largest correlation time in ¥, is finite, call it
7, then Eq. (5) reads

o?*(m) =l[7’ +2 i (l—i)r]
n 0 e | n !
+0[iexp( —T/r)], (11)
n

where T is a cutoff parameter in the sum. For exp( — T/
7) €1 the explicitly written terms in Eq. (8) clearly give a
very good approximation to o 2(m) ~ & (7/n). Further-
more, assuming n» 7,

A = J(I—Z) for t<£, (12a)
n
growing to
A = J(ﬁz) for t> 7. (12b)
n

So we may neglect A, in Eq. (9), since it is at least a factor 7/
n smaller than the term o 2(m) = & (7/n). Doing that, and
using Eq. (9) to eliminate ¥, from Eq. (5), we find

o 2(m) =7‘; (co) +2 ‘i (1 - %)(@)]

+02(m)(l+2T— T‘Tj”). (13)
n n
Solving for o ?(m) we find
co+ 237, (1—L)e,
n
o*(m)= , (14)
n—2T—1 +—-——T(T+ D

n

o+ 227 ¢
2(m ::( 2 =1 ) 15
A Wy (1)
One also sees the approximation
23T
az(m):(c°+ :=|cz>. (16)
n

All these variants of Eq. (14) are equally good when 7'/
n is sufficiently small. There is no reason not to use Eq. (14)
itself, though, when any of the formulas are appropriate. It is
as easy to compute as any of its approximations.

A variant of Eq. (8) in use is

¢, = l ”i'(xk— ! ni’xk)

n—1t =) n—1g=
l n—1
X .- .- 17
(Xk+ n—t k§|xk+) tn
Like Eq. (8), Eq. (17) is a biased estimator for ¥, since
<C(>=71 —az(m)'*'zn (18)
where

v, = a(’_s) . (19)

Neglecting A, relatively to o 2(m) in Eq. (19) leads again to
Egs. (13) and (14). Using Eq. (17) instead of Eq. (8) as
estimator for {c,) in Eq. (14) is a better approximation,
when |27_, (n —)A,| <|d 21, (n — 1)4,], i.e., roughly
when T2 < 7n.
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The problem and a solution

* Correlate function based estimators
 Most commonly used method
 Can be used for most correlation problems
* Many different versions for different problems
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The “blocking” method

* Let X be a finite time series with N entries containing position
X1, X0s « « « 5 Xy}

 (Calculate the standard deviation on the mean.
_ SDIx]

JN

 Half the dataset

\)

« Repeat withs=s’, N=N until N =2

10
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A

The “blocking” method
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Conclusion

* “Blocking” method more user friendly and easier to interpret
 Evaluates with as uncertainty on the error estimate.

 Can only be used for large N as it has to converge before N’ =2
* For function has to be defined for whole range

* Function who has to be treated in log-space
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’

1
X; =—2—(x2i—l + X5 ), (20)

n' =in. (21)

We define m’ as X', the average of the n’ “new” data, and
have

m' = m. (22)

We also define y; ; and y; as in Egs. (6) and (7) but from
primed variables x;. One easily shows that

, W +in fort=0
t — (23)
Yol +8V2 + 30204 fore>0
and that
. 1 &
0‘2(m)=—n-’3— Z ‘}/},j=0'2(m). (24)
=1
o2(m)>Le
n

13

At the fixed point the “blocked” variables (x;);_, .
are independent Gaussian variables—Gaussian by the cen-
tral limit theorem, and independent by virtue of the fixed
point value of ¥;. Consequently, we can easily estimate the
standard deviation on our estimate ¢}/ (n’ — 1) for o *(m).

Itis (V2/(n —1) ¢}/ (n' —1):

Cah Ca
cimym—2 4 [ 2 (27)
n—1 n—1n-1

kL (1 P ) (28)
n'—1 v2(n' — 1)

o(m) =




