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Components

Neural network training

Reconstruction generation

Measurement decision making

Benchmarking




Neural network training
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Reconstructions

The difference loss function
covers both a pixel-wise ‘
comparison as well as a
contextual term.

The contextual term is defined by
an adversarial algorithm and is
needed to prevent blurry

f reconstructions.

The latent loss function enforces a
gaussian distribution of z.



Reconstruction generation
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Measurement decision making
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Information gain:

IG(x) = an(m) X Dy (P(m) || P, (m))

Kullback-Leibler divergence:

Dyr(P(m) || Ppyy(m) = )




Example measurement

Measurement Acquisition map ‘




e measurement
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As more data is gathered the diversity
of the reconstructions decreases and
accuracy increases

In the final row uncertainty is almost
nearly eliminated.
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Benchmarking
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Transferability

Measurement Acquisition map ‘
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Distribution of reconstructions and sampling

Since it is known that deep generative models work well when the data
range is from —1 to 1, all measurements are rescaled so that the maximum
value of the absolute value of the initial measurement is 1. Let Y be a
random vector containing all pixel values. Observation Y,,, wheren > 1, is
the set of pairs of location x; and measurement y;
Yo ={(x;y))i =1,...,n}. Also, a subset of measurements is defined:
Yon = {(x,-,yj)lj =n,...,n'}. The likelihood of observations given Y is
defined by

p(Yn|Y) o< exp(—AZxyev, ly — Y(x)|), (4)

where Y(x) is the pixel value of Y at x, and A is a free parameter that
determines the sensitivity to the distance metric and is set to 1.0 for all
experiments in this paper. The posterior probability distribution is defined
by Bayes’ rule:

p(Y|Yn) o< p(YalY) p(Y). (5)

Likewise, we can find the posterior distribution of z given measurements
instead of Y. Let 2’ denote another input of the decoder, which is set to Y4
in the experiments. Then the posterior distribution of z can be expressed
with 2 when n > 64:

p(z|Yn,Z') o p(z|2') p(Yn|p(z,2)
x p(2) [ p(YnlY) p(Y|p(z,2) dY
x p(2) p(Ya|Y = Va),

where Y, is the reconstruction produced by the decoder given z and Z'.
Since all inputs of the decoder are given, p(Y|z,2’) is the Dirac delta
function centered at Y,. Also, p(z|2’) = p(z) as z and Z' are assumed
independent. Proposal distribution for MH is set to a multivariate normal

distribution having centered mean and a covariance matrix equal to one
quarter of the identity matrix. For the experiments in this paper, 400
iterations of MCMC steps are conducted when n = 32x 2%, where b is any
integer larger than or equal to 1. We found that 400 iterations result in
good posterior samples. If (x,:1,y,.,) is newly observed, then the
posterior can be updated incrementally:

1 Yy+1122')
p(ElYnin,2) = R (Y, Z)

— p(x"+1~yy+l|?z) /
T p(Xn1YpiqYn2') P(ZIY,,, z ),

because each term in (4) can be separated.



Decision algorithm

In this section, we derive a computationally simple form of the information
gain and the fact that maximising the information gain is equal to
minimising the entropy. Let p,(-) = p(:|Ys,Z'), and any probabilistic
quantity of y, ., has the condition x,,,, but omitted for brevity.

The continuous version of the information gain equation is

EYn+1 [KL(p,,(zly,,+,) ” p,,(z))]
=, Pani1)KL(Pa(2lY 1) || Pn(2))dy, s

= Jy,.. PoWni1) JzPn( zly,,H)Iong—dzdyn* (6)

= J,, . JePn(z.Yp.1)log it  dzdy,
- I(ZlY,-, ? YH-HIY’T)':

where KL is Kullback-Leibler divergence, /(-;-) is mutual information.
Since I(z|Yn; yp.11Yn) = H(2|Ys) — H(2Z|Ys, ¥, ), maximising the expected
KL divergence is equivalent to minimising H(z|Y,,y,.,), which is the
entropy of z after observing y,,. ;.

Since this integral is hard to compute, we approximate probability
density functions (PDFs) with samples and substitute them into (6). Let n;
denote the number of measurements that are used for sampling
reconstructions 2, ... ,Z, (the samples are converted to Yq,...,Ypn).
Then p,, (z) =~ Y03, (2), or with the sample index m, P, (m) = 1/M. For
any n > n,, the )probablllty is updated with the new measurements after n;:
P,(m;n;) = LUneal¥n)  \which can be derived from importance sampling.
For brevity, Zﬂfé §an{p'1?ng distribution information n; is omitted for the
remaining section. Likewise, p,(y,.1) = [,Pn(Vn:112) P,(2) = 3_,,Pn(m)
Pn(Yni1lZm). Lastly, we use the value of Ym at x,., for a sample of
Pn(¥Yni1]Zm) for simple and efficient computation. As a result, the
information gain is approximated, up to a constant ¢, by:

Ey,..[KL(p,(2ly 1) || Pa(2)] = %Pn(m) KL(Phi1 || Pn) +c.



