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Oral Presentation and Report

e Now would be a good to time to make sure you have:

e Selected a topic
e Selected a paper

* Done some work on preparing the presentation and/or report
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Outline

® Recapin 1D

e Extension to 2D
e |ikelihoods

e Contours

* Uncertainties

e This lecture is likely to extend beyond today; it we don't
get through everything today, we'll use a portion of
Thursday morning to finish it.

*Some material from T. Petersen, D. R. Grant, and G. Cowan
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Confidence intervals

“Comnfidence intervals consist of a range of values (interval)

that act as good estimates of the unknown population parameter.”
It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a S

Gaussian distribution can be constructed as: x —

(z denotes the number of sigmas wanted) - \/ﬁ

|
AV,

Lower Confidence Interval Upper
Bound ; Bound
X — Z0 5 X X + Z0 %

I\/Iarginiof Error Margin of Error




Confidence intervals

Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true
parameter fall inside the interval:

Prob(x_ <x < xy)= P(x)dx =C

Often, C is in terms of o or percent 50%, 90%, 95%, and 99%

There is a choice as follows:

1. Require symmetric interval (x+ and x- are equidistant from p).
2. Require the shortest interval (x+ to x- is a minimum).
3. Require a central interval (integral from x- to u is the same as from p to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.




Confidence Intervals

e Confidence intervals are often denoted as C.L. or
"Confidence Limits/Levels”

e Central limits are different than upper/lower limits

e \We can establish Gaussian Estimator
uncertainties on our %Zj
extracted best-fit .
parameters using 0s

likelihoods 04
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Variance of Estimators - Gaussian
Estimators

® Used for 1 or 2 parameters when the maximum likelihood estimate and variance
cannot be found analytically. Expand InL about its maximum via a Taylor series:

A Oln L A 1 0°InL ~
lnL(H) = lnL(Q) -+ (W)Qzé(e — 9) + Q(W)gzé(e — 9)2 + ...

® First term is InLmax, 2nd term is zero, third term can used for information inequality
(not covered here)

® ror 1 parameter:

® Minimize, or scan, as a function of 6 to get 0

® Uncertainty deduced from positions where InL is reduced by 0.5. For a

Gaussian likelihood function w/ 1 fit parameter:

0 — 6)2
InL(0) =1In Lyqe — ( A2)
QO'é
A 1 R A N?  For N standard
In L(H =+ 0'@“) = In Lpge — 5 or lnL(é’ + NUé) = In Lz — 7 O:JIevis;a\téi]cr)]njr
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Variance of Estimators - Gaussian
Estimators

A Oln L A 1 0°InL ~
lnL(e) = lnL(@) -+ (W)Hzé(é’ — 9) + 5(W)9:é(9 — (9)2 + ...

For more information, see “Variance of ML Estimators” sections

from “Statistical Data Analysis” (

)

O — )
InL(0) =1In Lyqe — ( AQ)
20@
A 1 A A N?  For N standard
In L(@ =+ O'é) = In Lpge — 5 or 1nL(9 + Naé) = In Lz — 7 O;evi:t?gn:r



https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf

In(Likelihood) and 2*LLH

e A change of 1 standard deviation (0) in the maximum
ikelihood estimator (MLE) of the parameter 6 leads to a
change in the In(likelihood) value of 0.5 for a gaussian

distributed estimator

e Even for a non-gaussian MLE, the 10 regiona defined as LLH-1/2 can be

an okay approximation

e Because the regions? defined with ALLH=1/2 are consistent with
common y? distributions multiplied by 1/2, we often calculate the

likelihoods as (-)2*LLH
* Translates to >1 tit parameters too, with the appropriate
change in 2*LLH confidence values

o 1 fit parameter, A(2LLH)=1 for 68.3% C.L.
o 2 fit parameter, A(2LLH)=2.3 for 68.3% C.L. +for a distribution w/ 1 fit parameter
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Variance of Estimator

Likelihood is from Lecture 3 and is

1
t, — —t/’T
flt;7) = —e

e First, we find the best-fit

estimate of T via our LLH 525 - - -

-
- exponential
S

minimization to get 7,

* Provides LLH(7,,,,)=-53.0

* We could scan to get 7,

but it won't be as precise or
fast as a minimizer algorithm

 We only have 1 fit parameter,
so from slide 7 we know that

values of 7 which cross

LLH(z,,,)-0.5 are the 10 7= 1062
. A?_ = 0.137
ranges, i.e. when the LLH )
AT_|_ = 0.165
equals -53.5 b:~ NP~ AFy ~0.15
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Reporting Very Asymmetric Central
Limits

e Central limits are often
N oy
reported as 0 + gy or 0°

it the error bars are asymmetric =~

e What happens when upper or T Best fit estimator
lower range away from the S
best-fit value(s) does not have

p—

' ?
the right coverage? E.q. for Iy

68% coverage, the lower 17%
of the distribution includes the

best fit point. j

e Quote the best-fit estimator of 6 0

O

and the limit ranges separately.
"Best fit is 6=0.21 and the 90%
central confidence region is
0.17-0.77"
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Exercise #1

e Before we use the LLH values to determine the uncertainties
for a and B, let's do it via Monte Carlo first

e Similar to the exercises 2-3 from Lecture 3, we will use the
theoretical prediction:

f(z;a,8) =1+ ax + Sz

e For data that has unknown values of a and B we want to get

an idea of the best-fit values of & and /3 from the data as well
as the uncertainties.

* There are 2000 Monte Carlo data points in a file for Exercise 1 on the

course webpage. The data points come from the above function
transformed into a PDF over the range -0.95 < x < 0.95.

* Remember to normalize the function properly to convert it to a proper
PDF
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Exercise #1 (cont.)

e it the maximum likelihood estimate (MLE) parameters &,

and f,,,, from the data files using a minimizer/maximizer

e To get an idea of what the distribution of &, . and 3, .
look like we will generate a certain number “N” ot pseudo-
trials, fit &

pseudo—trial,i and IB
independent and identically distributed pseudo-trial, ana

II )

pseudo—trial,i for each

then plot the "N” outcomes

e Each pseudo-trial has 2000 Monte Carlo data points
e Generate N=500 pseudo-trials

e Plota 1D histogram of all & a 1D histogram of all

seuda trial,ir

and a 2D scatter-plot of ,Bp versus o

/B pseudo—trial,i’ seudo—trial,i pseudo—trial,i

* ‘pseudo-trials’ are also known as ‘pseudo-experiments’
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* *values shown here are NOT the same as what
Xe rC I S e is used to generate the data file on the

webpage
e Shown are 500 Monte Carlo pseudo-experiments
* The estimates average to approximately the best-fit values, the )
variances are close to initial estimates from earlier slides and the a = 0.500
estimator distributions are approximately Gaussian ARMS = 0.0557
: : - . g = 0.5044
e But there is a much better way to estimate uncertainties than just .
Brars = 0.1197

assuming that the MC sample distributions of @ and /3 are

Gaussian
RMSE = Root Mean Squared

Error, i.e. sqgrt(variance)
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Comments

o After finding the best-tit values via In(likelihood)
maximization/minimization from data, one of THE best and
most robust calculations for the parameter uncertainties is

to run numerous pseudo-experiments using the best-fit
values for the Monte Carlo ‘true’ values and find out the

spread in pseudo-experiment best-fit values

e MLEs don’t have to be gaussian. Thus, a Monte Carlo based
uncertainty is accurate even if the Central Limit Theorem is invalid for

your data/parameters
e The routine of ‘Monte Carlo plus fitting” will take care of many

parameter correlations

* The problem is that it can be slow and gets exponentially slower with
each dimension for multi-dimensional scenarios
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Brute Force

e |[f we either did not know, or did not trust, that our
estimator(s) dare a nicely analytic PDF (gaussian) we can
use our pseudo-experiments to establish the uncertainty
on our best-fit values

e Using original PDF, sample from original PDF with injected values of

&, and 3, that were found from our original ‘fit

obs
* Fit each pseudo-experiment 8ol
* Repeat 70 ]]I
. . 601
* |ntegrate ensuing estimator PDF :

501
To get +10 central interval e

100% — 68.27 C- -
T [ i

100% — 68.27%
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Brute Force

* For the Monte Carlo brute force method, i.e. "parametric
bootstrapping”, the lower value for the confidence interval

is set at C_ and the upper value for the confidence interval

is set at C_, and we are calculating fora 16 C.L., i.e. 68.27%

80
70

100% — 68.27 C-
AL [ @samdda e

50

100% — 68.27% /OO X 40
2

Cy 30
20
10

Illlllllllllllll-l
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 &1

OO
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Brute Force cont.

* The previous method is known as a parametric bootstrap

e Overkill for the previous example
e Useful for estimators which are complicated

e Useful for when you want to ensure your uncertainties and
confidence intervals are accurate

e Finding the uncertainty using the integration of the tails
works for bayesian posteriors in same way as for

likelihoods

D. Jason Koskinen - Advanced Methods in Applied Statistics




Exercise 1b

e Continuing from Exercise 1 and using the same procedure
for the 500 values from the pseudo-experiments, i.e.
parametric bootstrapping

e Find the central 10 confidence interval(s) for @ as well as ,BA using
bootstrapping

* Repeat, but now:
e Fix a=0.65, and only fit for B, i.e. a is now a constant
e What is the new 10 central confidence interval for ,BA?
* Repeat with a new range of the -0.9 < x < 0.85

e Again, fix a=0.65
e 2000 Monte Carlo ‘data’ points
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Uncertainty from Bootstrapping vs.
Likelihood

® The uncertainty estimate from
bootstrapping: uses multiple Monte
Carlo generated samples (using the | ] /gﬂw
best-tit from the original data sample) })"“"
and the best-fit values of those MC
samples to build a distribution. The
‘'width’ of the ensuing fit values from

the Monte Carlo constitutes the I /B

uncertainties. }(bcﬁ‘?,’r)

e The uncertainty estimate from
likelihood(s): get the best-fit of a
parameter. Establish the value of the
parameter where the LLH difference to
the best-fit point is equal to the critical
value for the number of fit parameters.

4=
N

e See critical values on slide 24, or find chi-
square tables online for a more complete
list
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Exercise 1c

e Estimate the uncertainty only from the log-likelihood
difference (ALLH), no parametric bootstrapping

e Use the same data and function from the earlier exercises.

e Fix a=0.65, i.e. a is not a fit parameter and never changes.

e Since a is fixed, the function f(x; a, ) is a 1 parameter equation, and
the PDF of f(x; a, f) is also only dependent on 1 parameter. So the 1

o uncertainty is where | Z(x; &, Ppoq_pir) — L5, 0,;)| = 0.5, and
Op = :Bbest—fit — Py
e [optional] Check to see if Op is asymmetric, i.e. +05 += — O
for this problem when using the likelihood prescription to
estimate the uncertainty.
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Good?

 The LLH minimization will give the best-fit values and often
the uncertainty on the estimators. But, likelihood fits do
not tell whether the data and the prediction agree

e Remember that the likelihood has a form (PDF) that is provided by
you and may not be correct

e The PDF may be okay, but there may be some measurement
systematic uncertainty that is unknown or at least unaccounted for
which creates disagreement between the data and the best-fit
prediction

o |ikelihood ratios between two hypotheses are a good way to
exclude models, and we'll cover hypothesis testing next week
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Multi-parameter

e Getting back to LLH confidence intervals

* |In one dimension fairly straightforward

e Confidence intervals, i.e. uncertainty, can be deduced from the LLH
difference(s) to the best-fit point

e Brute force option is rarely a bad choice, and parametric
bootstrapping is nice

e Both strategies work in multi-dimensions too

e Often produce 2D contours of 8 vs. ¢

e There are some common mistakes to avoid
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Likelihood Contour/Surtace

* For 2 dimensions, i.e. 2-parameter fits, we can produce
ikelihood landscapes. In 3 dimensions a surface, and in 3+
dimensions a likelihood hypersurface.

e The contours are then lines of with a constant value of

likelihood or In(likelihood)

—130(

0.9

0.8

0.7

0.6

0.5 129¢

0.4
129(
0.3
0.2
128¢

0.1

128( *LLH landscape is from
o | ecture 3
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Variance of Estimators - Graphical
Method

e Two Parameter Contours

= N ~
O

é2__13é2 \\_;A__—f’ N
él - Aél él él + Aél 91 01
K correct J K incorrect J
C7 I i 1 i 1
B i i
06

___________________________________________________________

e Tangent lines to the contours

05 f true value E
i ML fit result

give the standard deviations

ei————————— In L(c, ) = In Lypge — 1/2

__________________________________________________________
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Variance of Estimators - Graphical

Method

e \When the correct, tangential,
method is used and the
uncertainties are not dependent

on the correlation of the variables.

e The probability the ellipses of
constant nL =1nL,,,. —a contains
the true point,6; and 6, is:

*DoF = Degree of freedom. Here it equates
to the number of fit parameters in the
likelihood.
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Best Result Plot?

KamLAND: "just smiling"
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Variance/Uncertainty - Using LLH

Values

® The LLH (or -2*LLH) landscape provides the necessary
information to construct 2+ dimensional confidence
intervals

* Provided the respective MLEs are gaussian or well-approximated as
gaussian the intervals are ‘easy’ to calculate

* For non-gaussian MLEs — which is not uncommon — a more
rigorous approach is needed, e.g. parametric bootstrapping

* Some minimization programs will return the uncertainty on
the parameter(s) after finding the best-tit values

e The .migrad() call in iminuit

* |tis possible to write your own code to do this as well
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Exercise #7

e Using the same function as Exercise #1, find the MLE
values for the data

e Plot the contours related to the 10, 20, and 30 confidence
regions

e Remember that this function has 2 fit parameters

e Because of different random number generators, your result is likely
to vary from mine
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Contours on Top of the LLH Space

-2*LLH
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Just the Contours

Contours from -2*LLH
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Real Data

* 1D projections of the 2D contour in order to give the best-

fit values and their uncertainties

sin” fp3 = 0.537075

Am32, = 2.7210-19 x 1073eV?

—2AInL
N

38l - |ceCube 2014 [NH] == T2K 2014 [NH]
' MINOS w/atm [NH] o SK IV [NH]

Remember, even though
they are 1D projections the
ALLH conversion to @ must

use the degrees-of-
freedom from the actual
fitting routine

. \ N
: :’ - ‘ N
‘ Lo - — .
\
: : .l. . ', “\\ ; ; -‘:‘\I
2.2' """"" o oo l”f .H.‘ e R NE L

| ‘ ‘ ‘ ‘ | ‘ ‘ ‘
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 O 1 2 3 4
SiIlZ (923) —2AInL

*arXiv:1410.7227
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Exercise #3

* There is a file posted on the class webpage which has two
columns of x numbers (not x and y, just x for 2 pseudo-
experiments) corresponding to x over the range -1 < x <1

e Using the function:

f(aj;cu,ﬁ) =14+ ax -|-B$2
¢ Find the best-fit for the unknown a and 8

e [Optional] Using a chi-squared test statistic, calculate the goodness-of-

fit (p-value) by histogramming the data. The choice of bin width can
be important

e Too narrow and there are not enough events in each bin for the statistical comparison

e Too wide and any difference between the ‘shape’ of the data and prediction

histogram will be washed out, leaving the result uninformative and possibly
misleading
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Extra

¢ Use a 3-dimensional function for a=0.5, =0.5, and Y=0.9

generate 2000 Monte Carlo data points using the function
transformed into a PDF over the range -1 < x < 1

flz;o, B,7) = 14 ax + B + ya°

e Find the best-fit values and uncertainties on a, B, and Y

e Similar to exercise #1, show that Monte Carlo re-sampling
produces similar uncertainties as the ALLH prescription for
the 3D hypersurtface

* |In 3D, are 500 Monte Carlo pseudo-experiments enough?
* Are 2000 Monte Carlo data points per pseudo-experiment enough?
e Write a profiler to project the 2D contour onto 1D, properly
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