Lecture 5: Parameter Estimation and Uncertainty

D. Jason Koskinen
koskinen@nbi.ku.dk

Advanced Methods in Applied Statistics
Feb - Apr 2023

Oral Presentation and Report

- Now would be a good to time to make sure you have:
- Selected a topic
- Selected a paper
- Done some work on preparing the presentation and/or report

Outline

- Recap in 1D
- Extension to 2D
- Likelihoods
- Contours
- Uncertainties
- This lecture is likely to extend beyond today; if we don't get through everything today, we'll use a portion of Thursday morning to finish it.

Confidence intervals

"Confidence intervals consist of a range of values (interval) that act as good estimates of the unknown population parameter."

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a Gaussian distribution can be constructed as: (z denotes the number of sigmas wanted)

Confidence intervals

Confidence intervals are constructed with a certain confidence level C, which is roughly speaking the fraction of times (for many experiments) to have the true parameter fall inside the interval:

$$
\operatorname{Prob}\left(x_{-} \leq x \leq x_{+}\right)=\int_{x_{-}}^{x_{+}} P(x) d x=C
$$

Often, C is in terms of σ or percent $50 \%, 90 \%, 95 \%$, and 99%
There is a choice as follows:

1. Require symmetric interval ($x+$ and x - are equidistant from μ).
2. Require the shortest interval ($x+$ to x - is a minimum).
3. Require a central interval (integral from $x-$ to μ is the same as from μ to $x+$).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.

Confidence Intervals

- Confidence intervals are often denoted as C.L. or "Confidence Limits/Levels"
- Central limits are different than upper/lower limits
- We can establish uncertainties on our extracted best-fit parameters using likelihoods

Gaussian Estimator

Variance of Estimators - Gaussian

Estimators

- Used for 1 or 2 parameters when the maximum likelihood estimate and variance cannot be found analytically. Expand lnL about its maximum via a Taylor series:

$$
\ln L(\theta)=\ln L(\hat{\theta})+\left(\frac{\partial \ln L}{\partial \theta}\right)_{\theta=\hat{\theta}}(\theta-\hat{\theta})+\frac{1}{2!}\left(\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)_{\theta=\hat{\theta}}(\theta-\hat{\theta})^{2}+\ldots
$$

- First term is $\ln _{\text {max }}$, 2 nd term is zero, third term can used for information inequality (not covered here)
- For $\mathbf{1}$ parameter:
- Minimize, or scan, as a function of θ to get $\hat{\theta}$
- Uncertainty deduced from positions where $\ln L$ is reduced by 0.5. For a Gaussian likelihood function w/ 1 fit parameter:

$$
\ln L(\theta)=\ln L_{\max }-\frac{(\theta-\hat{\theta})^{2}}{2 \hat{\sigma}_{\hat{\theta}}^{2}}
$$

$\ln L\left(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}\right)=\ln L_{\max }-\frac{1}{2} \quad$ or $\quad \ln L\left(\hat{\theta} \pm N \hat{\sigma}_{\hat{\theta}}\right)=\ln L_{\max }-\frac{N^{2}}{2} \quad \begin{gathered}\text { For } N \text { standard } \\ \text { deviations }\end{gathered}$

Variance of Estimators - Gaussian

Estimators

cannot be found analytically. Expand $\ln L$ about its maximum via a Taylor series

$$
\ln L(\theta)=\ln L(\hat{\theta})+\left(\frac{\partial \ln L}{\partial \theta}\right)_{\theta=\hat{\theta}}(\theta-\hat{\theta})+\frac{1}{2!}\left(\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)_{\theta=\hat{\theta}}(\theta-\hat{\theta})^{2}+\ldots
$$

For more information, see "Variance of ML Estimators" sections from "Statistical Data Analysis" (https://www.sherrytowers.com/ cowan statistical data analysis.pdf)

- Minimize, or scan, as a function of θ to get $\hat{\theta}$
- Uncertainty deduced from positions where $\ln L$ is reduced by 0.5. For a

$$
\text { Gaussian likelihood function w/ } 1 \text { fit parameter: }
$$

$$
\ln L(\theta)=\ln L_{\max }-\frac{(\theta-\hat{\theta})^{2}}{2 \hat{\sigma}_{\hat{\theta}}^{2}}
$$

$\ln L\left(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}\right)=\ln L_{\max }-\frac{1}{2} \quad$ or $\quad \ln L\left(\hat{\theta} \pm N \hat{\sigma}_{\hat{\theta}}\right)=\ln L_{\max }-\frac{N^{2}}{2} \quad \begin{gathered}\text { For } N \text { standard } \\ \text { deviations }\end{gathered}$

$\ln ($ Likelihood) and 2*LLH

- A change of 1 standard deviation (σ) in the maximum likelihood estimator (MLE) of the parameter θ leads to a change in the $\ln (l i k e l i h o o d)$ value of 0.5 for a gaussian distributed estimator
- Even for a non-gaussian MLE, the 1σ regiona defined as LLH-1/2 can be an okay approximation
- Because the regions ${ }^{\text {a }}$ defined with $\Delta L L H=1 / 2$ are consistent with common χ^{2} distributions multiplied by $1 / 2$, we often calculate the likelihoods as (-)2*LLH
- Translates to >1 fit parameters too, with the appropriate change in 2*LLH confidence values
- 1 fit parameter, $\Delta(2 L L H)=1$ for 68.3% C.L.
- 2 fit parameter, $\Delta(2 L L H)=2.3$ for 68.3% C.L.

Variance of Estimator

$$
f(t ; \tau)=\frac{1}{\tau} e^{-t / \tau}
$$

- First, we find the best-fit estimate of T via our LLH minimization to get $\hat{\tau}_{\text {best }}$
- Provides $\operatorname{LLH}\left(\hat{\tau}_{\text {best }}\right)=-53.0$
- We could scan to get $\hat{\tau}_{\text {best }}$ but it won't be as precise or fast as a minimizer algorithm
- We only have 1 fit parameter, so from slide 7 we know that values of $\hat{\tau}$ which cross
$\operatorname{LLH}\left(\hat{\tau}_{\text {best }}\right)-0.5$ are the 1σ ranges, i.e. when the LLH equals -53.5

Reporting Very Asymmetric Central

Limits

- Central limits are often
reported as $\hat{\theta} \pm \sigma_{\theta}$ or $\hat{\theta}_{-\sigma_{2}}^{+\sigma_{1}}$
if the error bars are asymmetric
- What happens when upper or lower range away from the best-fit value(s) does not have the right coverage? E.g. for 68% coverage, the lower 17\% of the distribution includes the best fit point.
- Quote the best-fit estimator of θ and the limit ranges separately.
 "Best fit is $\theta=0.21$ and the 90% central confidence region is 0.17-0.77"

Exercise \#1

- Before we use the LLH values to determine the uncertainties for α and β, let's do it via Monte Carlo first
- Similar to the exercises 2-3 from Lecture 3, we will use the theoretical prediction:

$$
f(x ; \alpha, \beta)=1+\alpha x+\beta x^{2}
$$

- For data that has unknown values of α and β we want to get an idea of the best-fit values of $\hat{\alpha}$ and $\hat{\beta}$ from the data as well as the uncertainties.
- There are 2000 Monte Carlo data points in a file for Exercise 1 on the course webpage. The data points come from the above function transformed into a PDF over the range $-0.95 \leq x \leq 0.95$.
- Remember to normalize the function properly to convert it to a proper PDF

Exercise \#1 (cont.)

- Fit the maximum likelihood estimate (MLE) parameters $\hat{\alpha}_{\text {data }}$ and $\hat{\beta}_{\text {data }}$ from the data files using a minimizer/maximizer
- To get an idea of what the distribution of $\hat{\alpha}_{\text {data }}$ and $\hat{\beta}_{\text {data }}$ look like we will generate a certain number " N " of pseudotrials, fit $\hat{\alpha}_{\text {pseudo-trial, },}$ and $\hat{\beta}_{\text {pseudo-trial, },}$ for each " i " independent and identically distributed pseudo-trial, and then plot the " N " outcomes
- Each pseudo-trial has 2000 Monte Carlo data points
- Generate N=500 pseudo-trials
- Plot a 1D histogram of all $\hat{\alpha}_{\text {pseudo-trial, }, i}$ a 1 D histogram of all $\hat{\beta}_{p s e u d o-t r i a l, i}$ and a 2D scatter-plot of $\hat{\beta}_{p s e u d o-t r i a l, i}$ versus $\hat{\alpha}_{\text {pseudo-trial }, i}$
- 'pseudo-trials' are also known as 'pseudo-experiments'

Exercise \#1

- Shown are 500 Monte Carlo pseudo-experiments
- The estimates average to approximately the best-fit values, the variances are close to initial estimates from earlier slides and the

$$
\begin{aligned}
\overline{\hat{\alpha}} & =0.5005 \\
\hat{\alpha}_{R M S} & =0.0557 \\
\overline{\hat{\beta}} & =0.5044 \\
\hat{\beta}_{R M S} & =0.1197
\end{aligned}
$$ estimator distributions are approximately Gaussian

- But there is a much better way to estimate uncertainties than just assuming that the MC sample distributions of $\hat{\alpha}$ and $\hat{\beta}$ are Gaussian

RMSE = Root Mean Squared Error, i.e. sqrt(variance)

Comments

- After finding the best-fit values via \ln (likelihood) maximization/minimization from data, one of THE best and most robust calculations for the parameter uncertainties is to run numerous pseudo-experiments using the best-fit values for the Monte Carlo 'true' values and find out the spread in pseudo-experiment best-fit values
- MLEs don't have to be gaussian. Thus, a Monte Carlo based uncertainty is accurate even if the Central Limit Theorem is invalid for your data/parameters
- The routine of 'Monte Carlo plus fitting' will take care of many parameter correlations
- The problem is that it can be slow and gets exponentially slower with each dimension for multi-dimensional scenarios

Brute Force

- If we either did not know, or did not trust, that our estimator(s) dare a nicely analytic PDF (gaussian) we can use our pseudo-experiments to establish the uncertainty on our best-fit values
- Using original PDF, sample from original PDF with injected values of $\hat{\alpha}_{\text {obs }}$ and $\hat{\beta}_{\text {obs }}$ that were found from our original 'fit'
- Fit each pseudo-experiment
- Repeat
- Integrate ensuing estimator PDF To get $\pm 1 \sigma$ central interval

$$
\begin{aligned}
& \frac{100 \%-68.27 \%}{2}=\int_{-\infty}^{C_{-}} g\left(\hat{\alpha} ; \hat{\alpha}_{o b s}\right) d \hat{\alpha} \\
& \frac{100 \%-68.27 \%}{2}=\int_{C_{+}}^{\infty} g\left(\hat{\alpha} ; \hat{\alpha}_{o b s}\right) d \hat{\alpha}
\end{aligned}
$$

Brute Force

- For the Monte Carlo brute force method, i.e. "parametric bootstrapping", the lower value for the confidence interval is set at C_{-}and the upper value for the confidence interval is set at C_{+}, and we are calculating for a 1σ C.L., i.e. 68.27%

$$
\frac{100 \%-68.27 \%}{2}=\int_{-\infty}^{C_{-}} g\left(\hat{\alpha} ; \hat{\alpha}_{o b s}\right) d \hat{\alpha}
$$

$$
\frac{100 \%-68.27 \%}{2}=\int_{C_{+}}^{\infty} g\left(\hat{\alpha} ; \hat{\alpha}_{o b s}\right) d \hat{\alpha}
$$

Brute Force cont.

- The previous method is known as a parametric bootstrap
- Overkill for the previous example
- Useful for estimators which are complicated
- Useful for when you want to ensure your uncertainties and confidence intervals are accurate
- Finding the uncertainty using the integration of the tails works for bayesian posteriors in same way as for likelihoods

Exercise 1b

- Continuing from Exercise 1 and using the same procedure for the 500 values from the pseudo-experiments, i.e. parametric bootstrapping
- Find the central 1σ confidence interval(s) for $\hat{\alpha}$ as well as $\hat{\beta}$ using bootstrapping
- Repeat, but now:
- Fix $a=0.65$, and only fit for β, i.e. a is now a constant
- What is the new 1σ central confidence interval for $\hat{\beta}$?
- Repeat with a new range of the $-0.9 \leq x \leq 0.85$
- Again, fix a=0.65
- 2000 Monte Carlo 'data' points

Uncertainty from Bootstrapping vs.

Likelihood

- The uncertainty estimate from bootstrapping: uses multiple Monte Carlo generated samples (using the best-fit from the original data sample) and the best-fit values of those MC samples to build a distribution. The 'width' of the ensuing fit values from the Monte Carlo constitutes the uncertainties.
- The uncertainty estimate from likelihood(s): get the best-fit of a parameter. Establish the value of the parameter where the LLH difference to the best-fit point is equal to the critical value for the number of fit parameters.
- See critical values on slide 24 , or find chisquare tables online for a more complete list

Exercise 1c

- Estimate the uncertainty only from the log-likelihood difference ($\Delta L L H$), no parametric bootstrapping
- Use the same data and function from the earlier exercises.
- Fix $a=0.65$, i.e. α is not a fit parameter and never changes.
- Since α is fixed, the function $f(x ; \alpha, \beta)$ is a 1 parameter equation, and the PDF of $f(x ; \alpha, \beta)$ is also only dependent on 1 parameter. So the 1 σ uncertainty is where $\left|\mathscr{L}\left(x ; \alpha, \beta_{\text {best-fit }}\right)-\mathscr{L}\left(x ; \alpha, \beta_{\sigma}\right)\right|=0.5$, and $\sigma_{\beta}=\beta_{\text {best-fit }}-\beta_{\sigma}$
- [optional] Check to see if σ_{β} is asymmetric, i.e. $+\sigma_{\beta} \neq-\sigma_{\beta}$ for this problem when using the likelihood prescription to estimate the uncertainty.

Good?

- The LLH minimization will give the best-fit values and often the uncertainty on the estimators. But, likelihood fits do not tell whether the data and the prediction agree
- Remember that the likelihood has a form (PDF) that is provided by you and may not be correct
- The PDF may be okay, but there may be some measurement systematic uncertainty that is unknown or at least unaccounted for which creates disagreement between the data and the best-fit prediction
- Likelihood ratios between two hypotheses are a good way to exclude models, and we'll cover hypothesis testing next week

Multi-parameter

- Getting back to LLH confidence intervals
- In one dimension fairly straightforward
- Confidence intervals, i.e. uncertainty, can be deduced from the LLH difference(s) to the best-fit point
- Brute force option is rarely a bad choice, and parametric bootstrapping is nice
- Both strategies work in multi-dimensions too
- Often produce 2D contours of $\hat{\theta}$ vs. $\hat{\phi}$
- There are some common mistakes to avoid

Likelihood Contour/Surface

- For 2 dimensions, i.e. 2-parameter fits, we can produce likelihood landscapes. In 3 dimensions a surface, and in 3+ dimensions a likelihood hypersurface.
- The contours are then lines of with a constant value of likelihood or $\ln ($ likelihood)

*LLH landscape is from Lecture 3

Variance of Estimators - Graphical

 Method- Two Parameter Contours

Variance of Estimators - Graphical

 Method- When the correct, tangential, method is used and the uncertainties are not dependent on the correlation of the variables.
- The probability the ellipses of constant $\ln L=\ln L_{\text {max }}-a$ contains the true point, θ_{1} and θ_{2}, is:

correct
*DoF = Degree of freedom. Here it equates to the number of fit parameters in the likelihood.

a $(1 \mathrm{DoF})$	a $(2 \mathrm{DoF})$	σ
0.5	1.15	1
2.0	3.09	2
4.5	5.92	3

Best Result Plot?

KamLAND: "just smiling"

Variance/Uncertainty - Using LLH

Values

- The LLH (or -2*LLH) landscape provides the necessary information to construct 2+ dimensional confidence intervals
- Provided the respective MLEs are gaussian or well-approximated as gaussian the intervals are 'easy' to calculate
- For non-gaussian MLEs - which is not uncommon - a more rigorous approach is needed, e.g. parametric bootstrapping
- Some minimization programs will return the uncertainty on the parameter(s) after finding the best-fit values
- The .migrad() call in iminuit
- It is possible to write your own code to do this as well

Exercise \#2

- Using the same function as Exercise \#1, find the MLE values for the data
- Plot the contours related to the 10, 2б, and 30 confidence regions
- Remember that this function has 2 fit parameters
- Because of different random number generators, your result is likely to vary from mine

Contours on Top of the LLH Space

-2*LLH

Just the Contours

Contours from -2*LLH

Real Data

- 1D projections of the 2D contour in order to give the bestfit values and their uncertainties

$$
\sin ^{2} \theta_{23}=0.53_{-0.12}^{+0.09}
$$

$\Delta m_{32}^{2}=2.72_{-0.20}^{+0.19} \times 10^{-3} \mathrm{eV}^{2}$

Remember, even though they are 1D projections the Δ LLH conversion to $\boldsymbol{\sigma}$ must use the degrees-offreedom from the actual fitting routine

Exercise \#3

- There is a file posted on the class webpage which has two columns of x numbers (not x and y, just x for 2 pseudoexperiments) corresponding to x over the range $-1 \leq x \leq 1$
- Using the function:

$$
f(x ; \alpha, \beta)=1+\alpha x+\beta x^{2}
$$

- Find the best-fit for the unknown $\boldsymbol{\alpha}$ and β
- [Optional] Using a chi-squared test statistic, calculate the goodness-offit (p-value) by histogramming the data. The choice of bin width can be important
- Too narrow and there are not enough events in each bin for the statistical comparison
- Too wide and any difference between the 'shape' of the data and prediction histogram will be washed out, leaving the result uninformative and possibly misleading

Extra

- Use a 3-dimensional function for $\boldsymbol{\alpha}=0.5, \boldsymbol{\beta}=0.5$, and $\gamma=0.9$ generate 2000 Monte Carlo data points using the function transformed into a PDF over the range $-1 \leq \mathrm{x} \leq 1$

$$
f(x ; \alpha, \beta, \gamma)=1+\alpha x+\beta x^{2}+\gamma x^{5}
$$

- Find the best-fit values and uncertainties on $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and γ
- Similar to exercise \#1, show that Monte Carlo re-sampling produces similar uncertainties as the Δ LLH prescription for the 3D hypersurface
- In 3D, are 500 Monte Carlo pseudo-experiments enough?
- Are 2000 Monte Carlo data points per pseudo-experiment enough?
- Write a profiler to project the 2D contour onto 1D, properly

