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• Now would be a good to time to make sure you have: 

• Selected a topic 

• Selected a paper 

• Done some work on preparing the presentation and/or report

Oral Presentation and Report
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• Recap in 1D 

• Extension to 2D 

• Likelihoods 

• Contours 

• Uncertainties 

• This lecture is likely to extend beyond today; if we don’t 
get through everything today, we’ll use a portion of 
Thursday morning to finish it.

Outline 
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*Some material from T. Petersen, D. R. Grant, and G. Cowan 
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Confidence intervals
“Confidence intervals consist of a range of values (interval)
that act as good estimates of the unknown population parameter.”

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a
Gaussian distribution can be constructed as:
(z denotes the number of sigmas wanted)
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• -

Confidence intervals
Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true

parameter fall inside the interval:

Often, C is in terms of σ or percent 50%, 90%, 95%, and 99%

There is a choice as follows:
1. Require symmetric interval (x+ and x- are equidistant from μ).

2. Require the shortest interval (x+ to x- is a minimum).
3. Require a central interval (integral from x- to μ is the same as from μ to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.

Prob(x�  x  x+) =

Z x+

x�

P (x)dx = C
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• Confidence intervals are often denoted as C.L. or 
“Confidence Limits/Levels” 

• Central limits are different than upper/lower limits

Confidence Intervals
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• Used for 1 or 2 parameters when the maximum likelihood estimate and variance 
cannot be found analytically. Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term can used for information inequality 
(not covered here) 

• For 1 parameter:   

• Minimize, or scan, as a function of  to get   

• Uncertainty deduced from positions where lnL is reduced by 0.5.  For a 

Gaussian likelihood function w/ 1 fit parameter:

θ ̂θ

Variance of Estimators - Gaussian 
Estimators
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lnL(✓) = lnL(✓̂) + (
@ lnL

@✓
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deviations
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• Used for 1 or 2 parameters when the maximum likelihood estimate and variance 
cannot be found analytically. Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term can used for information inequality 
(not covered here) 

• For 1 parameter:   

• Minimize, or scan, as a function of  to get   

• Uncertainty deduced from positions where lnL is reduced by 0.5.  For a 

Gaussian likelihood function w/ 1 fit parameter:

θ ̂θ

Variance of Estimators - Gaussian 
Estimators
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For more information, see “Variance of ML Estimators” sections 
from “Statistical Data Analysis” (https://www.sherrytowers.com/

cowan_statistical_data_analysis.pdf) 

https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf


D. Jason Koskinen - Advanced Methods in Applied Statistics

• A change of 1 standard deviation (σ) in the maximum 
likelihood estimator (MLE) of the parameter θ leads to a 
change in the ln(likelihood) value of 0.5 for a gaussian 
distributed estimator 
• Even for a non-gaussian MLE, the 1σ regiona defined as LLH-1/2 can be 

an okay approximation 

• Because the regionsa defined with ΔLLH=1/2 are consistent with 
common 𝜒2  distributions multiplied by 1/2, we often calculate the 

likelihoods as (-)2*LLH 

• Translates to >1 fit parameters too, with the appropriate 
change in 2*LLH confidence values 

• 1 fit parameter,  Δ(2LLH)=1 for 68.3% C.L. 

• 2 fit parameter,  Δ(2LLH)=2.3 for 68.3% C.L.

ln(Likelihood) and 2*LLH 
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afor a distribution w/ 1 fit parameter 
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• First, we find the best-fit 
estimate of τ via our LLH 
minimization to get  

• Provides LLH( )=-53.0 

• We could scan to get , 
but it won’t be as precise or 
fast as a minimizer algorithm 

• We only have 1 fit parameter, 
so from slide 7 we know that 
values of  which cross 
LLH( )-0.5 are the 1σ 
ranges, i.e. when the LLH 
equals -53.5

̂τbest

̂τbest

̂τbest

̂τ
̂τbest

Variance of Estimator
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⌧̂ = 1.062
�⌧̂� = 0.137

�⌧̂+ = 0.165
�̂⌧̂ ⇡ �⌧̂� ⇡ �⌧̂+ ⇡ 0.15

exponential

sample size 50

f(t; ⌧) =
1

⌧
e�t/⌧

Likelihood is from Lecture 3 and is 
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• Central limits are often 
reported as  or            
if the error bars are asymmetric 

• What happens when upper or 
lower range away from the 
best-fit value(s) does not have 
the right coverage? E.g. for 
68% coverage, the lower 17% 
of the distribution includes the 
best fit point.  

• Quote the best-fit estimator of θ 
and the limit ranges separately. 
“Best fit is θ=0.21 and the 90% 
central confidence region is 
0.17-0.77”

̂θ ± σθ
̂θ+σ1
−σ2

Reporting Very Asymmetric Central 
Limits
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• Before we use the LLH values to determine the uncertainties 
for α and β, let’s do it via Monte Carlo first 

• Similar to the exercises 2-3 from Lecture 3,  we will use the 
theoretical prediction: 

• For data that has unknown values of α and β we want to get 
an idea of the best-fit values of  and  from the data as well 
as the uncertainties. 

• There are 2000 Monte Carlo data points in a file for Exercise 1 on the 
course webpage. The data points come from the above function 
transformed into a PDF over the range -0.95 ≤ x ≤ 0.95. 

• Remember to normalize the function properly to convert it to a proper 
PDF

α̂ ̂β

Exercise #1
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f(x;↵,�) = 1 + ↵x+ �x2
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• Fit the maximum likelihood estimate (MLE) parameters  
and  from the data files using a minimizer/maximizer 

• To get an idea of what the distribution of  and  
look like we will generate a certain number “N” of pseudo-
trials, fit  and  for each “i” 
independent and identically distributed pseudo-trial, and 
then plot the “N” outcomes 

• Each pseudo-trial has 2000 Monte Carlo data points 

• Generate N=500 pseudo-trials 

• Plot a 1D histogram of all , a 1D histogram of all 
, and a 2D scatter-plot of    versus  

• ‘pseudo-trials’ are also known as ‘pseudo-experiments’

α̂data
̂βdata

α̂data
̂βdata

α̂pseudo−trial,i
̂βpseudo−trial,i

α̂pseudo−trial,i
̂βpseudo−trial,i

̂βpseudo−trial,i α̂pseudo−trial,i

Exercise #1 (cont.)
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• Shown are 500 Monte Carlo pseudo-experiments 

• The estimates average to approximately the best-fit values, the 
variances are close to initial estimates from earlier slides and the 
estimator distributions are approximately Gaussian 

• But there is a much better way to estimate uncertainties than just 
assuming that the MC sample distributions of  and  are 
Gaussian

α̂ ̂β

Exercise #1
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• After finding the best-fit values via ln(likelihood) 
maximization/minimization from data, one of THE best and 
most robust calculations for the parameter uncertainties is 
to run numerous pseudo-experiments using the best-fit 
values for the Monte Carlo ‘true’ values and find out the 
spread in pseudo-experiment best-fit values 

• MLEs don’t have to be gaussian. Thus, a Monte Carlo based 
uncertainty is accurate even if the Central Limit Theorem is invalid for 
your data/parameters 

• The routine of ‘Monte Carlo plus fitting’ will take care of many 
parameter correlations 

• The problem is that it can be slow and gets exponentially slower with 
each dimension for multi-dimensional scenarios

Comments
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• If we either did not know, or did not trust, that our 
estimator(s) dare a nicely analytic PDF (gaussian) we can 
use our pseudo-experiments to establish the uncertainty 
on our best-fit values 

• Using original PDF, sample from original PDF with injected values of 
 and  that were found from our original ‘fit’ 

• Fit each pseudo-experiment 

• Repeat 

• Integrate ensuing estimator PDF

α̂obs
̂βobs

Brute Force
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α
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• For the Monte Carlo brute force method, i.e. “parametric 
bootstrapping”, the lower value for the confidence interval 
is set at  and the upper value for the confidence interval 
is set at , and we are calculating for a 1  C.L., i.e. 68.27%

C−
C+ σ

Brute Force
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• The previous method is known as a parametric bootstrap 
• Overkill for the previous example 

• Useful for estimators which are complicated 

• Useful for when you want to ensure your uncertainties and 
confidence intervals are accurate 

• Finding the uncertainty using the integration of the tails 
works for bayesian posteriors in same way as for 
likelihoods

Brute Force cont.
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• Continuing from Exercise 1 and using the same procedure 
for the 500 values from the pseudo-experiments, i.e. 
parametric bootstrapping 

• Find the central 1σ confidence interval(s) for  as well as  using 
bootstrapping 

• Repeat, but now: 

• Fix α=0.65, and only fit for β, i.e. α is now a constant 

• What is the new 1σ central confidence interval for ? 

• Repeat with a new range of the -0.9 ≤ x ≤ 0.85 

• Again, fix α=0.65 

• 2000 Monte Carlo ‘data’ points

α̂ ̂β

̂β

Exercise 1b
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• The uncertainty estimate from 
bootstrapping: uses multiple Monte 
Carlo generated samples (using the 
best-fit from the original data sample) 
and the best-fit values of those MC 
samples to build a distribution. The 
‘width’ of the ensuing fit values from 
the Monte Carlo constitutes the 
uncertainties. 

• The uncertainty estimate from 
likelihood(s): get the best-fit of a 
parameter. Establish the value of the 
parameter where the LLH difference to 
the best-fit point is equal to the critical 
value for the number of fit parameters. 

• See critical values on slide 24, or find chi-
square tables online for a more complete 
list

Uncertainty from Bootstrapping vs. 
Likelihood
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• Estimate the uncertainty only from the log-likelihood 
difference ( ), no parametric bootstrapping 

• Use the same data and function from the earlier exercises. 

• Fix α=0.65, i.e.  is not a fit parameter and never changes. 

• Since  is fixed, the function  is a 1 parameter equation, and 
the PDF of  is also only dependent on 1 parameter. So the 1
 uncertainty is where , and 

 

• [optional] Check to see if  is asymmetric, i.e. ,  
for this problem when using the likelihood prescription to 
estimate the uncertainty. 

ΔLLH

α
α f(x; α, β)

f(x; α, β)
σ |ℒ(x; α, βbest−fit) − ℒ(x; α, βσ) | = 0.5
σβ = βbest−fit − βσ

σβ +σβ ≠ − σβ

Exercise 1c
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• The LLH minimization will give the best-fit values and often 
the uncertainty on the estimators. But, likelihood fits do 
not tell whether the data and the prediction agree 

• Remember that the likelihood has a form (PDF) that is provided by 
you and may not be correct 

• The PDF may be okay, but there may be some measurement 
systematic uncertainty that is unknown or at least unaccounted for 
which creates disagreement between the data and the best-fit 
prediction 

• Likelihood ratios between two hypotheses are a good way to 
exclude models, and we’ll cover hypothesis testing next week

Good?
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• Getting back to LLH confidence intervals 

• In one dimension fairly straightforward 

• Confidence intervals, i.e. uncertainty, can be deduced from the LLH 
difference(s) to the best-fit point 

• Brute force option is rarely a bad choice, and parametric 
bootstrapping is nice 

• Both strategies work in multi-dimensions too 

• Often produce 2D contours of  vs.  

• There are some common mistakes to avoid

̂θ ̂ϕ

Multi-parameter

23
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• For 2 dimensions, i.e. 2-parameter fits, we can produce 
likelihood landscapes. In 3 dimensions a surface, and in 3+ 
dimensions a likelihood hypersurface. 

• The contours are then lines of with a constant value of 
likelihood or ln(likelihood)

Likelihood Contour/Surface

24
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Lecture 3
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• Two Parameter Contours 

• Tangent lines to the contours 
give the standard deviations  

Variance of Estimators - Graphical 
Method

25

✓1

✓2

✓̂1
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lnL(↵,�) = lnLmax � 1/2
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• When the correct, tangential, 
method is used and the 
uncertainties are not dependent 
on the correlation of the variables.   

• The probability the ellipses of 
constant                           contains 
the true point,             , is:

Variance of Estimators - Graphical 
Method
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✓1

✓2

✓̂1

✓̂2

✓̂2 + �✓̂2

✓̂2 ��✓̂2

✓̂1 ��✓̂1 ✓̂1 + �✓̂1

correct

lnL = lnLmax � a

✓1 and ✓2

a            
(1 DoF)

a          
  (2 DoF) σ

0.5 1.15 1

2.0 3.09 2

4.5 5.92 3
*DoF = Degree of freedom. Here it equates 

to the number of fit parameters in the 
likelihood. 
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Best Result Plot?

27
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• The LLH (or -2*LLH) landscape provides the necessary 
information to construct 2+ dimensional confidence 
intervals 

• Provided the respective MLEs are gaussian or well-approximated as 
gaussian the intervals are ‘easy’ to calculate 

• For non-gaussian MLEs — which is not uncommon — a more 
rigorous approach is needed, e.g. parametric bootstrapping 

• Some minimization programs will return the uncertainty on 
the parameter(s) after finding the best-fit values 

• The .migrad() call in iminuit 

• It is possible to write your own code to do this as well

Variance/Uncertainty - Using LLH 
Values

28
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• Using the same function as Exercise #1, find the MLE 
values for the data 

• Plot the contours related to the 1σ, 2σ, and 3σ confidence 
regions 

• Remember that this function has 2 fit parameters  

• Because of different random number generators, your result is likely 
to vary from mine

Exercise #2

29
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Contours on Top of the LLH Space

30
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Just the Contours

31

α
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LLH∆Contours from -2*-2*LLH
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• 1D projections of the 2D contour in order to give the best-
fit values and their uncertainties

Real Data

32

�m2
32 = 2.72+0.19

�0.20 ⇥ 10�3eV2

sin2 ✓23 = 0.53+0.09
�0.12

*arXiv:1410.7227

Remember, even though 
they are 1D projections the 
ΔLLH conversion to σ must 

use the degrees-of-
freedom from the actual 

fitting routine
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• There is a file posted on the class webpage which has two 
columns of x numbers (not x and y, just x for 2 pseudo-
experiments) corresponding to x over the range -1 ≤ x ≤ 1 

• Using the function: 

• Find the best-fit for the unknown 𝝰 and 𝝱 

• [Optional] Using a chi-squared test statistic, calculate the goodness-of-
fit (p-value) by histogramming the data. The choice of bin width can 
be important 
• Too narrow and there are not enough events in each bin for the statistical comparison 

• Too wide and any difference between the ‘shape’ of the data and prediction 
histogram will be washed out, leaving the result uninformative and possibly 
misleading

Exercise #3

33

f(x;↵,�) = 1 + ↵x+ �x2
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• Use a 3-dimensional function for 𝝰=0.5, 𝝱=0.5, and Ɣ=0.9 

generate 2000 Monte Carlo data points using the function 
transformed into a PDF over the range -1 ≤ x ≤ 1 

• Find the best-fit values and uncertainties on 𝝰, 𝝱, and Ɣ 

• Similar to exercise #1, show that Monte Carlo re-sampling 
produces similar uncertainties as the ΔLLH prescription for 
the 3D hypersurface 

• In 3D, are 500 Monte Carlo pseudo-experiments enough? 

• Are 2000 Monte Carlo data points per pseudo-experiment enough? 

• Write a profiler to project the 2D contour onto 1D, properly

Extra

34

f(x;↵,�, �) = 1 + ↵x+ �x2 + �x5


