Markus Ahlers & D. Jason Koskinen

March 2023

Ahlers & Koskinen ()

Statistical Hypothesis Tests

March 2023

slide 1

• Typical problem in physics and astronomy:

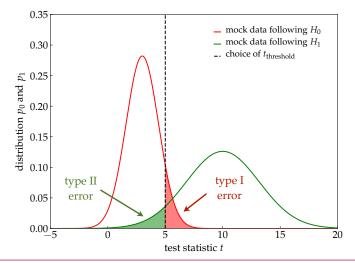
You have collected data with your experiment or observatory and want to test a theory (signal hypothesis H_1)?

- ➔ How can you judge if the hypothesis is correct/wrong?
- → How does the alternative hypothesis (null hypothesis H₀) look like?
- How confident can you be that your conclusions are correct?
- In most cases there is a chance that your decision is wrong:
 - X You decided that H_1 is correct, but it is actually wrong? (type I error)
 - X You decided that H_1 is wrong, but it is actually correct? (type II error)

• A statistical hypothesis test is based on the test statistic that allows to quantify the degree of confidence that your decision was right or wrong.

- A useful test statistic:
 - is sensitive to the signal hypothesis H_1 (that's a must!)
 - is efficiently calculable (e.g. fast calculation on your computer)
 - has a **well-known behaviour** for data following the null hypothesis H₀ (more on this later)
- Test statistics that we have come across in this class are the χ^2 , log-likelihood, and likelihood. The latter two we will review.

Test Statistic Distribution



In a hypothesis test we have to choose a **critical** *t*-value to either reject or accept the hypothesis.

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Test Statistic Distribution

• significance (α) :

Probability that background would have created outcome with same t or larger (**type I error**):

$$\alpha = \int_{t_{\rm obs}}^{\infty} \mathrm{d}t \, p_0(t) = \text{``p-value''}$$

- Note: It is a convention that t increases for a more "signal-like" outcome. If not, just define a new test statistic t' = -t.
- power of test (1β) : Probability that signal would have created outcome with same t or less (type II error):

$$\beta = \int_{-\infty}^{t_{\rm obs}} \mathrm{d}t \, p_1(t)$$

- → A good statistical test will have good "separation" of p₀ and p₁ to allow a minimize type I/II errors. Separation from background allows to quantify **significance** of the observed data:
 - discovery (in particle physics) :

$$\alpha \simeq 5.7 \times 10^{-7} ("5\sigma")$$

• evidence (in particle physics) :

$$\alpha \simeq 2.7 \times 10^{-4} ("3\sigma")$$

- Often, we want to estimate the **performance** of a statistical test prior to a measurement by simulations. We can determine this by tuning the signal strength, *e.g.* the IceCube experiment uses:
 - discovery potential:

$$lpha\simeq 5.7 imes 10^{-7}(``5\sigma")$$
 and $eta=0.5$

90% sensitivity level:

 $\alpha = 0.5$ and $\beta = 0.1$

Today's Program

- **Today**, we will explore various examples of hypothesis tests and test statistics:
- Maximum likelihood ratio test
 - This is a very powerful test statistic (Neyman-Pearson theorem).
 - Allows to quantify background distributions p_0 (Wilks theorem).
 - We will study the applicability of Wilks theorem by a **numerical example** (exercise 1).
 - Discussion of trials factor corrections.
- Kolmogorov-Smirnov test & Auto-Correlation
 - We will introduce this test by the cumulative auto-correlation function of event distributions on a sphere.
 - This test allows to study hidden structure in event distributions, *e.g.* deviations from an isotropic distribution.
 - We will generate Monte Carlo data following isotropic and simple anisotropic distributions and study the performance of the test (exercise 2).

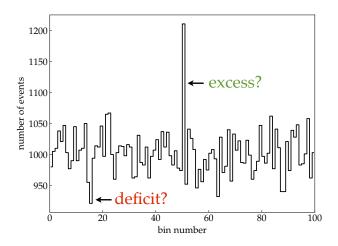
Extra Material

- Angular power spectrum (optional, will not be covered during lecture)
 - The power spectrum C_{ℓ} can be used as a test statistic that allows to study distributions of data (large number of events, temperature flucuations (CMB),...) on a sphere.
 - Brief introduction of spherical harmonics $Y_{\ell m}$ as basis functions on a sphere (exercise 3).
 - Introduction of the two-point angular correlation function and its relation to the power spectrum.
 - Introduction of the power spectrum.
 - Extraction of power spectra from Monte Carlo data and background (exercise 4).

Part I Maximum Likelihood Ratio

Recap: Maximum Likelihood Ratio

- Consider data (N_{tot} "events") distributed in N_{bins} bins.
- Question: Is there an excess or deficit in the data?



Recap: Maximum Likelihood Ratio

• Likelihood for data vector **x** and parameter vector **µ**:

$$\mathcal{L}(\boldsymbol{\mu}|\mathbf{x}) = \prod_{i=1}^{N_{\text{bins}}} \frac{\mu_i^{x_i}}{x_i!} e^{-\mu_i}$$
Poisson distributions

Null hypothesis ("no signal")

$$\mu_i = \mu_{bg} = const$$

• Signal hypothesis ("signal (excess or deficit) in bin 1")

$$\mu_i = \begin{cases} \mu_{\text{sig}} + \mu_{\text{bg}}^* & i = 1\\ \mu_{\text{bg}}^* & 2 \le i \le N_{\text{bins}} \end{cases}$$

! Important note: $\mu_{bg}^* \neq \mu_{bg}$

Maximum of Null Hypothesis

• for convenience : likelihood → natural 'log-likelihood' (LLH)

$$\ln \mathcal{L}(\boldsymbol{\mu}|\mathbf{x}) = \sum_{i=1}^{N_{\text{bins}}} (x_i \ln \mu_i - \mu_i) + \underbrace{\text{const}}_{\text{independent of }\boldsymbol{\mu}}$$

- In general, maximum of LH (or LLH) can be derived numerically. This example is easy enough to solve analytically:
- maximum LH value determined by:

$$\frac{d\ln \mathcal{L}}{d\mu_{\rm bg}} = 0 = \sum_{i=1}^{N_{\rm bins}} \left(\frac{x_i}{\mu_{\rm bg}} - 1\right)$$

• maximum $\hat{\mu}_{bg}$ obeys:

$$\hat{\mu}_{\rm bg} = \frac{N_{\rm tot}}{N_{\rm bins}}$$

Maximum of Signal Hypothesis

• For the signal hypothesis we have to find the maximum w.r.t. signal and background strength:

$$rac{d\ln \mathcal{L}}{d\mu_{
m bg}^*}=0 \quad {
m and} \quad rac{d\ln \mathcal{L}}{d\mu_{
m sig}}=0$$

- Signal term μ_{sig} is (by construction) only present in bin 1.
- maximum $\{\hat{\mu}_{\mathrm{bg}}^*, \hat{\mu}_{\mathrm{sig}}\}$ obeys:

$$\hat{\mu}_{bg}^* = \frac{N_{tot} - x_1}{N_{bins} - 1}$$
$$\hat{\mu}_{sig} = x_1 - \hat{\mu}_{bg}^* = \frac{x_1 N_{bins} - N_{tot}}{N_{bins} - 1}$$

Maximum LH Ratio

• test statistic λ is defined as maximum likelihood ratio:

$$\lambda(\mathbf{x}) = -2\ln\left(\frac{\mathcal{L}(\mathbf{x}|\hat{\mu}_{bg}, \mathbf{0})}{\mathcal{L}(\mathbf{x}|\hat{\mu}_{bg}^{*}, \hat{\mu}_{sig})}\right)$$

- after some algebra using the solutions of $\hat{\mu}_{\mathrm{bg}}$, $\hat{\mu}_{\mathrm{bg}}^{*}$, and $\hat{\mu}_{\mathrm{sig}}$:

$$\lambda(\mathbf{x}) = 2x_1 \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}} x_1\right) + 2(N_{\text{tot}} - x_1) \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}} \frac{N_{\text{tot}} - x_1}{N_{\text{bins}} - 1}\right) \quad (1)$$

- Note: The first (or second) term in Eq.(1) vanishes in the special case $x_1 = 0$ (or $N_{\text{tot}} x_1 = 0$).
- **bonus exercise**: Derive $\hat{\mu}_{bg}$, $\hat{\mu}_{bg}^*$, $\hat{\mu}_{sig}$, and Eq.(1).

 \rightarrow exercise 1 : Let's explore the behaviour of Eq.(1).

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Exercise 1

- Generate Monte Carlo data assuming $N_{\text{bins}} = 100$ bins.
- Consider two categories:
 - three background cases: choose $\mu_{sig} = 0$ and $\mu_{bg} = 0.1$, 10, or 1000.
 - two signal cases:

choose $\mu_{
m bg}^*=1000$ and signal in first bin (i=1) with $\mu_{
m sig}=100$ and 200.

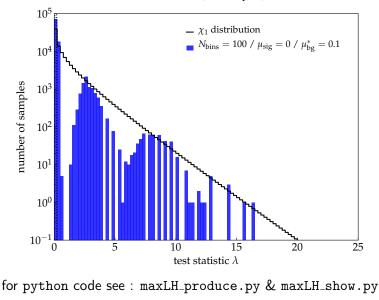
• For each case generate many (10⁵) pseudo-experiments, i.e. trials, $\mathbf{x} = \{x_1, \dots, x_{N_{\text{bins}}}\}$ of Monte Carlo data and calculate $\lambda(x_1, N_{\text{tot}} = \sum_{i=1}^{N_{\text{bins}}} x_i)$:

$$\lambda = 2x_1 \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}} x_1\right) + 2(N_{\text{tot}} - x_1) \ln\left(\frac{N_{\text{bins}}}{N_{\text{tot}}} \frac{N_{\text{tot}} - x_1}{N_{\text{bins}} - 1}\right)$$

• Make histograms of the λ values to estimate the null and signal distributions.

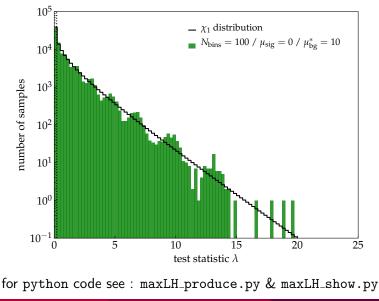
Exercise 1: Background Cases

simulation (10⁵ samples)



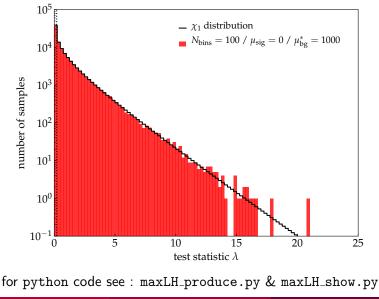
Exercise 1: Background Cases

simulation (10⁵ samples)



Exercise 1: Background Cases

simulation (10⁵ samples)



Wilks Theorem (1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

BY S. S. WILKS

(...)

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\bar{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_i = \theta_{0i}$, i = m + 1, m + 2, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with h - mdegrees of freedom.

bonus exercise: Try to find this publication online.

Wilks Theorem

Brief reminder:

- Let **x** be data that follows a probability function $f(\mathbf{x}|\theta_1, \ldots, \theta_n)$.
- The corresponding likelihood function for the null hypothesis $\mathcal{L}_0(\theta_1, \dots, \theta_n | \mathbf{x})$ has a maximum at $\hat{\theta}_1, \dots, \hat{\theta}_n$.
- The corresponding likelihood function for the alternative hypothesis $\mathcal{L}_A(\theta_1, \ldots, \theta_n | \mathbf{x})$ has a maximum at $\hat{\hat{\theta}}_1, \ldots, \hat{\hat{\theta}}_{m-1}, \hat{\hat{\theta}}_m$, for m > n.

• Wilks theorem:

For a large number of samples \mathbf{x} , the distribution of the test statistic

$$-2\ln\left(\frac{\mathcal{L}_0(\hat{\theta}_1,\ldots,\hat{\theta}_n|\mathbf{x})}{\mathcal{L}_A(\hat{\hat{\theta}}_1,\ldots,\hat{\hat{\theta}}_{m-1},\hat{\hat{\theta}}_m|\mathbf{x})}\right)$$

approaches a χ^2_k distribution with k=m-n in the limit of a large number of events, $N_{\rm tot}.$

Quick Example

• For large N_{tot} we can apply Wilks theorem and assume that the background distribution follows a $\chi^2_{k=1}$ distribution.

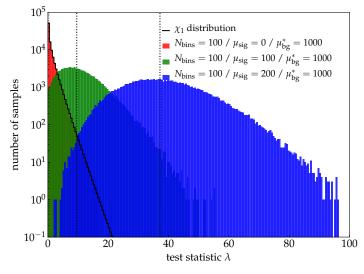
$$p - \text{value} = \int_{\lambda_{obs}}^{\infty} dx \chi_k^2(x) = 1 - \text{erf}(\sqrt{\lambda_{obs}/2})$$

- Assume $N_{\rm tot} = 10^5$, $N_{\rm bins} = 100$ and first bin contains:
 - 1100 events : maximum likelihood value $\lambda_{\rm obs} \simeq 9.8$ Wilks theorem: $p \simeq 0.0017$
 - 1150 events : maximum likelihood value $\lambda_{\rm obs}\simeq 21.7$ Wilks theorem: $p\simeq 3.2\times 10^{-6}$
 - 1200 events : maximum likelihood value $\lambda_{\rm obs}\simeq 38.0$ Wilks theorem: $p\simeq 7.1\times 10^{-10}$

→ the 5σ discovery threshold corresponds to $x_1 \simeq 1162$ events

Exercise 1, cont.: Signal vs. Background

simulation (10^5 samples)



for python code see : maxLH_produce.py & maxLH_show.py

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Sensitivity and Discovery Potential

- performance of the test
 - sensitivity level:

defined as the level of μ_{sig} such that 90% of the signal distribution is above 50% of the background distribution

• discovery potential:

defined as the level of μ_{sig} such that 50% of samples have a chance probability of 5.7×10^{-7} to be generated by background only

- → This is a challenge for brute-force background simulation you need $N_{\text{samples}} \gg 10^7$ for accuracy!
 - However, **Wilks theorem** allows to extrapolate the background distribution very easily:
- → For $\chi^2_{k=1}$ distribution we know that the "5 σ " level corresponds to:

$$\lambda_{\text{threshold}} = 5^2 = 25$$

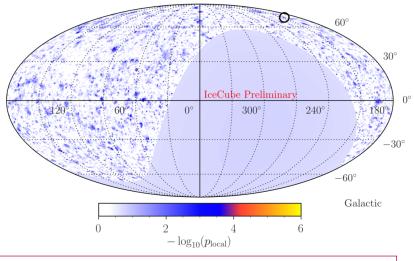
Trial Correction

- What happens if we want to find a signal not just in bin 1 but in any of the $N_{\rm bins}$ bins?
- We can simply repeat the test over all bins and identify the bin with minimum p-value (p_*) .
- **Problem:** There are many bins ("hypothesis") and we have to account for the fact that there can be a chance fluctuation in the local *p*-values.
- If $N_{\rm bins}$ are independent of each other (as in our example) then we can define a post-trial p-value as

$$p_{\mathrm{post}} = 1 - \underbrace{(1 - p_*)^{N_{\mathrm{bins}}}}_{\mathrm{background probability}} \simeq N_{\mathrm{bins}} p_*$$

• Number of independent "trials", $N_{\rm trials}$, is often difficult to estimate.

Example: IceCube Neutrino Data

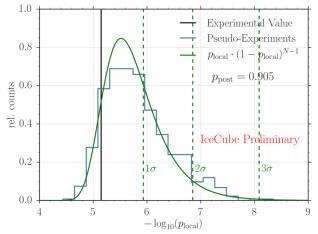


"All-sky" point-like source search: each location tested for an excess!

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Example: IceCube Neutrino Data

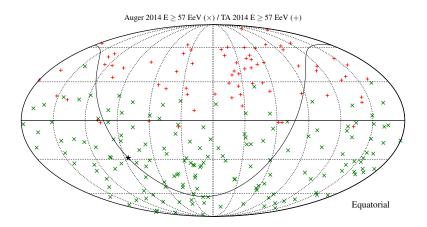


• Trial factor: $N_{\text{trials}} \sim N_{\text{bins}} \sim \mathcal{O}(1000)$

 IceCube procedure: choose maximal p_{local} in sky map as a new test statistic and compare against maximal p_{local} of randomly generated sky maps

Part II Kolmogorov Smirnov Test & Auto-Correlation

Example: Arrival Direction of Cosmic Rays



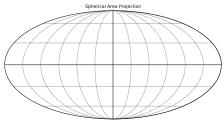
Anisotropies in the arrival directions of ultra-high energy cosmic rays (data from the observatories Telescope Array (TA) and Pierre Auger Observatory).

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Mini-Exercise: Isotropy on a Sphere

- Our data and Monte Carlo has been analyzed in *mostly* linear cartesian coordinate reference frames.
- When switching to spherical coordinates we move to azimuth and zenith angles which are **not** uniform in (x,y).
 - Isotropy is 'uniform' randomly dispersed data on the surface area: 4π steradians for a sphere.
 - Our normal linear sampling in x and y (or even linear in azimuth and zenith) will overpopulate the poles.
- Find a way to generate Monte Carlo uniformly on a surface in spherical coordinates.



Auto-Correlation

- So far, we have only looked into local excesses in individual bins.
- This method was not sensitive to the correlation between events, *e.g.* in neighbouring bins or in small clusters.
- Consider N_{tot} events distributed on a sphere with position **n**_i (unit vector).
- For two events with label *i* and *j* (*i* ≠ *j*) we can define an angular distance:

$$\cos\varphi_{ij}=\mathbf{n}_i\cdot\mathbf{n}_j$$

• The cumulative two-point auto-correlation function is defined as

$$\mathcal{C}(\{\mathbf{n}_i\},\varphi) = \frac{2}{N_{\text{tot}}(N_{\text{tot}}-1)} \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{i-1} \Theta(\cos\varphi_{ij} - \cos\varphi)$$
(2)

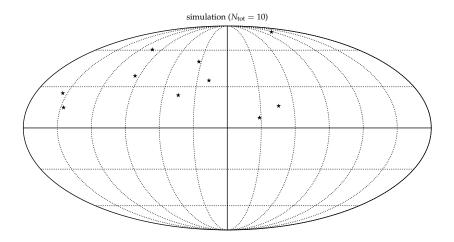
with step function $\Theta(x) = 1$ for $x \ge 0$ and $\Theta(x) = 0$ for x < 0.

→ This expression counts the pairs of events within angular distance φ .

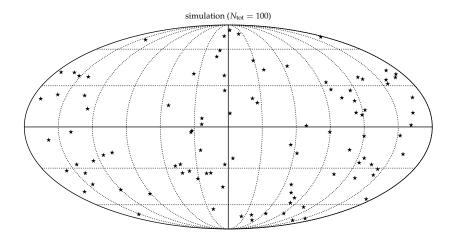
• Note : The step function $\Theta()$ is sometimes referenced as the Heaviside function.

Exercise 2: Event Distributions

- Generate Monte Carlo data of events on a sphere for two categories:
- isotropic distribution:
 - generate N_{tot} events randomly distributed on a sphere
 - e.g. python module healpy allows for pixelised sky maps with equal pixel area
 - Derive the two-point auto-correlation function for the distribution.
 - What distribution do you expect for a large number of events?
- **biased distribution** (bonus exercise):
 - generate $N_{\rm tot}$ events following a non-isotropic distribution
 - *e.g.* only sample events within a limited azimuth or zenith range, or events following a dipole distribution
 - How does the auto-correlation function compare to that of the isotropic distribution?



for python code see : twopoint.py

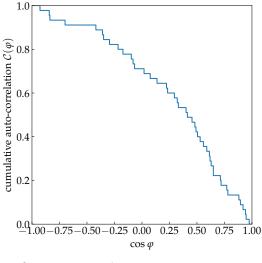


for python code see : twopoint.py

simulation ($N_{\text{tot}} = 1000$)

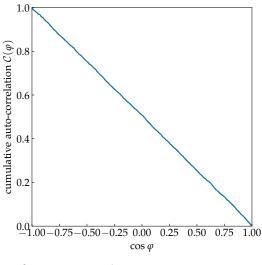
for python code see : twopoint.py

simulation (10 events)



for python code see : twopoint.py

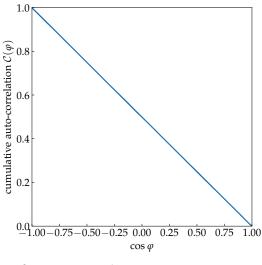
simulation (100 events)



for python code see : twopoint.py

Exercise 2: Isotropic Distribution

simulation (1000 events)



for python code see : twopoint.py

Ahlers & Koskinen ()

Exercise 2: Large-N limit

• In the limit of a large number of events, N_{tot} the cumulative distribution is just given by the relative size of the solid angle $\Delta\Omega$ with half-opening angle φ

$$\lim_{N_{\text{tot}}\to\infty} \mathcal{C}(\{\mathbf{n}_i\}, \varphi) \to \mathcal{C}_{\text{iso}}(\varphi) = \frac{\Delta\Omega}{4\pi}$$

solid angle

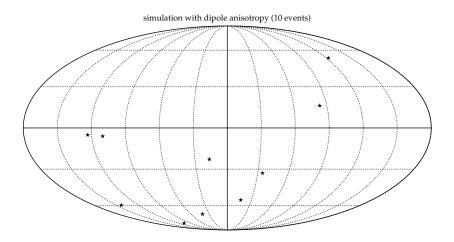
$$\Delta \Omega = 2\pi (1 - \cos \varphi)$$

• isotropic distribution:

$$\mathcal{C}_{\rm iso}(\varphi) = \frac{1}{2}(1 - \cos \varphi)$$

! Note: an isotropic distribution of a **finite** number of events will always show deviations from C_{iso} .

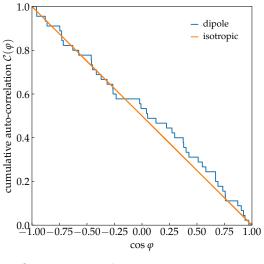
Exercise 2: Anisotropic Distribution



for python code see : twopoint.py

Exercise 2: Anisotropic Distribution

simulation (10 events)



for python code see : twopoint.py

Ahlers & Koskinen ()

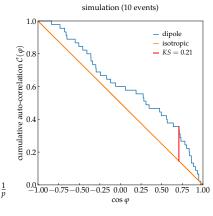
- We want to define a quantity that is a statistical measure for the difference between the empirical distribution and background distribution.
- Area between two curves?

$$\int \mathrm{d}\cos\varphi |\mathcal{C}(\{\mathbf{n}_i\},\varphi) - \mathcal{C}_{\mathrm{iso}}(\varphi)|$$

• Or, more general (L^p norm)?

$$\int \mathrm{d}\cos\varphi \,|\mathcal{C}(\{\mathbf{n}_i\},\varphi) - \mathcal{C}_{\mathrm{iso}}(\varphi))\,|^p \bigg]$$

• Kolmogrov-Smirnov: $p \to \infty$.



• In general, given two cumulative probability distributions, $0 \le A(x) \le 1$ and $0 \le B(x) \le 1$, we can define the Kolmogorov-Smirnov test as:

$$KS = \mathbf{sup}_x |A(x) - B(x)|$$

- Cumulative auto-correlation function C({n_i}, φ) follows the probability distributions to find a pair of events within an angular distance φ.
- We will use this in the following to define a test statistic, that describes **deviation from an isotropic background distribution**:

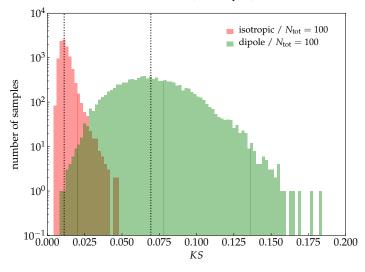
$$KS(\{\mathbf{n}_i\}) = \mathbf{sup}_{\varphi} |\mathcal{C}(\{\mathbf{n}_i\}, \varphi) - \mathcal{C}_{iso}(\varphi)|$$

- **Plan:** For a fixed number of events N_{tot} we can simulate isotropic event distributions (null hypothesis) and their *KS* values (test statistic).
- → Separation of KS for observed data from background distribution allows to estimate significance of an excess.
 - number of event pairs increases as

$$N_{\text{pair}} = \frac{1}{2}N_{\text{tot}}(N_{\text{tot}} - 1) \propto N_{\text{tot}}^2$$

Cumulative auto-correlation function in Eq. (2) becomes numerically inefficient.

simulation (10^4 samples)

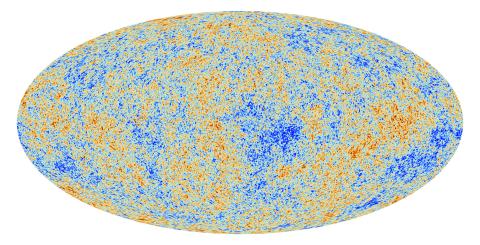


for python code see : KS_produce.py & KS_show.py

Ahlers & Koskinen ()

Part III Angular Power Spectrum (optional)

Example: Temperature Fluctuation in CMB



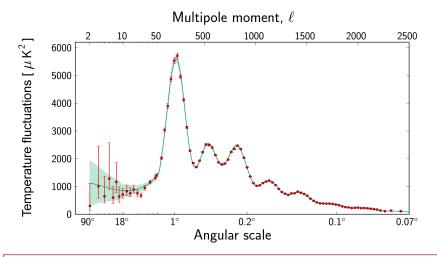
Temperature anisotropies of the cosmic microwave background (CMB) observed by the Planck satellite.

Ahlers & Koskinen ()

Statistical Hypothesis Tests

March 2023

Example Temperature Fluctuation in CMB



The angular power spectrum C_{ℓ} of the temperature fluctuations.

Auto-Correlation for Large $N_{\rm tot}$

- In the Kolmogorov-Smirnov test we observed that for large $N_{\rm tot}$ the number of pairs increase as $N_{\rm tot}^2$ and the calculation can become very inefficient.
- In large- $N_{\rm tot}$ limit we can approximate the event distribution by a smooth function

$$g(\Omega) = \lim_{N_{\rm bins} \to \infty} \frac{\Delta n(\Omega)}{N_{\rm tot} \Delta \Omega}$$

• On a smooth distribution we can define the **two-point auto-correlation function** as

$$\xi(\varphi) = \int d\Omega_1 \int d\Omega_2 \delta(\mathbf{n}(\Omega_1)\mathbf{n}(\Omega_2) - \cos\varphi) g(\Omega_1) g(\Omega_2)$$

• **Note:** This is the differential version of cumulative auto-correlation function.

Auto-Correlation for Large $N_{\rm tot}$

• **comment 1** : *cumulative* two-point auto-correlation function:

$$\mathcal{C}(\varphi) = \int\limits_{\cos \varphi}^{1} \mathrm{d}\cos \varphi' \xi(\varphi')$$

• comment **2** : isotropic distribution $g(\Omega) = 1/(4\pi)$

$$\xi(\varphi) \stackrel{+}{=} \frac{1}{2} \quad \rightarrow \quad \mathcal{C}_{\text{iso}}(\varphi) = \int_{\cos\varphi}^{1} d\cos\varphi' \frac{1}{2} = \frac{1}{2}(1 - \cos\varphi) \qquad (\checkmark)$$

+ follows from:

$$\delta(\mathbf{n}(\Omega_1)\mathbf{n}(\Omega_2) - \cos\varphi) = 2\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell}(\cos\varphi) Y_{\ell m}^*(\Omega_1) Y_{\ell m}(\Omega_2)$$

Spherical Harmonics

 Every smooth function g(θ, φ) on a sphere can be decomposed in terms of spherical harmonics Y_{ℓm}:

$$g(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

• coefficients given by:

$$a_{\ell m} = \int \mathrm{d}\Omega Y^*_{\ell m}(\theta,\phi) g(\theta,\phi)$$

➔ for real-valued functions:

$$a_{\ell m}^* = (-1)^m a_{\ell-m}$$

Spherical Harmonics

- The low- ℓ components are
 - $\ell = 0$: monopole $Y_{00} = 1/\sqrt{4\pi}$
 - $\ell = 1$: dipole

$$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta \quad Y_{1-1} = \sqrt{\frac{3}{8\pi}}\sin\theta e^{-i\varphi} \quad Y_{11} = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\varphi}$$

- $\ell = 2$: quadrupole, $\ell = 3$: octupole, etc.
- angular power spectrum:

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$

• simple relation to ξ via Legendre polynomials P_{ℓ} :

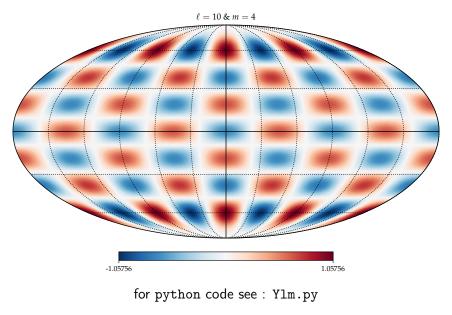
$$\xi(\varphi) = 2\pi \sum_{\ell} (2\ell + 1) \frac{C_{\ell} P_{\ell}(\cos \varphi)}{C_{\ell}}$$

Exercise 3

- visualize spherical harmonics for various combinations of ℓ and m
- for example, in python use healpy:

```
nside = 128
npix = H.nside2npix(nside)
IMAX = 4*nside
almsize = np.int(((LMAX+2)*(LMAX+1))/2)
alm = np.zeros(almsize.dtvpe=np.complex)
1 = 10
m = 4
index = H.sphtfunc.Alm.aetidx(LMAX,l,m)
alm[index] = 1.0
map = H.alm2map(alm,nside,lmax=LMAX)
mapmax = max(max(map), max(-map))
maptitle = r'$\ell= ' + str(l) + '$ \& $m= ' + str(m) + '$'
H.mollview(map,cmap=cm.RdBu_r,max=mapmax,min=-mapmax,title=maptitle)
H.graticule()
show()
```

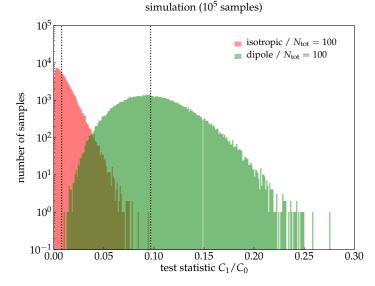
Exercise 3 : Example Map of Spherical Harmonic



Ahlers & Koskinen ()

Statistical Hypothesis Tests

Power Spectrum



for python code see : C1_produce.py & C1_show.py

Ahlers & Koskinen ()

Power Spectrum

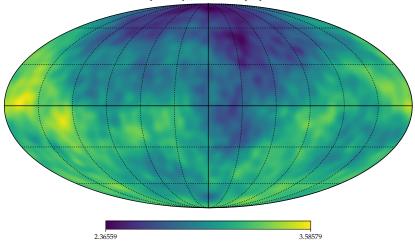
- In general, we want to judge if a distribution of events shows evidence for an excess in the power spectrum compared to background expectations.
- Strategy: Generate background maps from data via scrambling:
 - a) choose two random bins i and j
 - b) interchange the events in the two bins
 - c) repeat from a) until $N_{\rm scramble} \gg N_{\rm bins}$
- The distribution of the power spectrum of these maps gives an estimate of the median and variance of the background power.
- Expected median noise level:

$$\mathcal{N} = rac{1}{N_{\mathrm{tot}}}$$

Exercise 4

- Load the two data files truemap1.fits and eventmap1.fits (the second file is a bin-wise Poisson sample with mean given in the first map)
- Display the maps
- Determine and compare the power spectra C_ℓ/C_0 of the two maps, e.g. with HealPix or healpy
- Generate a background map via data scrambling, as described on the previous slide.
- Compare the power spectrum of the event map to the expected noise level $1/N_{\rm tot}.$

Exercise 4 : Template vs. Event Map



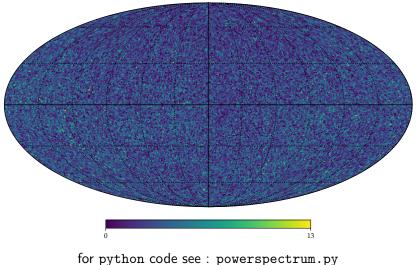
for python code see : powerspectrum.py

Ahlers & Koskinen ()

Statistical Hypothesis Tests

Exercise 4 : Template vs. Event Map

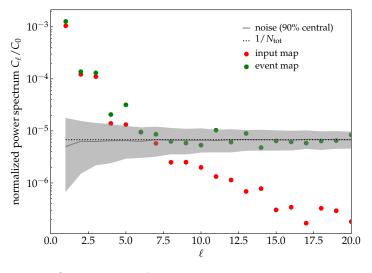
data map with 147473.0 events



Ahlers & Koskinen ()

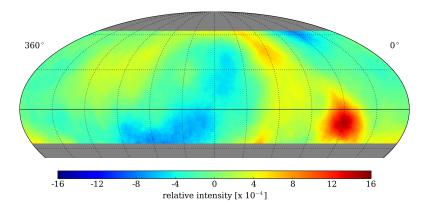
Statistical Hypothesis Tests

Exercise 4 : Power Spectra



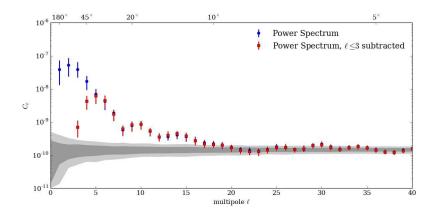
for python code see : powerspectrum.py

Example: HAWC Anisotropies



Study of cosmic ray arrival directions with the High Altitude Water Cherenkov (HAWC) detector.

Example: HAWC Anisotropies



Study of cosmic ray arrival directions with the High Altitude Water Cherenkov (HAWC) detector.