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1 Introduction

A major part of experimental physics is data analysis of experiments and further refinement of experimental design.
Robust methods for data analysis are introduced in this course, namely MCMC bootstrapping. This robustness however
comes at the cost of computational time. A low cost alternative to MCMC bootstrapping for parameter estimation is the
use of the Fisher Matrix, which approximates the likelihood as a Gaussian with mean at the MLE parameters. This is
an easily calculated quantity, but just as MCMC bootstrapping sacrifices computational time for robustness, so does the
Fisher Matrix sacrifice robustness for computational time.

In the above paper, authors Elena Sellentin, Miguel Quartin and Luca Amendola present the ”DALI” method (Deriva-
tive Approximation for LIkelihoods), which serves as a middle ground between the two extremes of the Fisher Matrix and
MCMC bootstrapping.

Note: Throughout the paper, Einstein summation convention is used: repeated indices in a formula imply summation
over that index.

2 Review

In the paper, the authors assume a general (negative) log-likelihood (LLH) L = − ln(P ), dependent on a set of n
parameters, labelled by pα, with α = 1, . . . , n. They then expand the LLH in a Taylor series to fourth order about the
maximum likelihood estimator (MLE). This results in an approximate LLH of the form

L = N +
1

2
Fαβ∆pα∆pβ +

1
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Sαβγ∆pα∆pβ∆pγ +

1

4!
Qαβγδ∆pα∆pβ∆pγ∆pδ +O(5), (1)

where
Fαβ = L,αβ , Sαβγ = L,αβγ , Qαβγδ = L,αβγδ (2)

(with subscript ”, α” denoting a partial derivative w.r.t. the parameter α), ∆pα = pα − p̂α is the deviation of parameter
pα from the MLE value of p̂α, and lastly N is a normalization. In this expression, three tensors appear. These are
rank two, three and four respectively: Fαβ is the Fisher Matrix, Sαβγ is dubbed the ”Flexion” and Qαβγδ is dubbed the
”Quarxion”. Note that for linear models (and Gaussian likelihoods in general), the Flexion and Quarxion are identically
zero. This method then also serves as an explicit check of Gaussianity In the frequentist approach these can be simplified
to

S = 3µ,αβMµ,γ∆pα∆pβ∆pγ , Q = (4µ,αγδMµ,β + 3µ,δγMµ,βα)∆pα∆pβ∆pγ∆pδ, (3)

where M is the inverse of the covariance in the data-space, i.e., the sample covariance, and µ is a vector of the model
predictions for the data.

The problem with this expansion is that the Flexion term is never globally negative (which is required, if the probability
density is to remain positive) due to it being qubic in ∆. Similarly, the Quarxion term is not guaranteed to be globally
negative either. This shortcoming can be alleviated by expanding in order of derivative instead of parameter deviations.
For example, up to second order in the derivatives of the model, the LLH is
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This approximation is positive definite and normalizable, provided that the matrix M is positive definite. This approxi-
mation is dubbed the ”doublet-DALI”. To third order the approximation is dubbed the ”triplet-DALI”, and is
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1

12
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+O(4).

(5)

These two equations are, in essence, the DALI method. Armed with these equations, the authors apply the method to
type Ia supernova data (”SNeIa” data). In particular they apply it to the Union2.1 catalogue of SNeIa data (Amanulla
et al. 2010). The results are reproduced below in Figure 1, where we see that the DALI method is capable of recovering
the non-Gaussianities present in the data set.

Figure 1: The DALI method applied to to SNeIa data from the Union2.1 catalogue, from the article. The LLH is calculated
as a function of the mass-density Ωm and the present dark energy equation of state parameter w0.

3 Conclusion

The authors set out to expand the Fisher Matrix formalism, to allow it to reproduce non-Gaussianities that are often
present in physical models. In this case the expansion is in the form of expanding the likelihood in orders of derivative of
the model. By rearranging the sum and using the frequentist formalism, this results in normalizable expressions for the
likelihood at any order. In the paper, the authors present expressions up to third order in the derivatives of the model.
They then apply these expressions on type Ia supernova data and are able to represent non-Gaussianities in the data.
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