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(Artificial) Neural Network

« Emulates neurons, thus the name.

« Input layer takes defining features (pixel values,
momentum, etc) as inputs for our Neural Network

e Inthe hidden layer is where the real computation takes
place. This is where features are extracted.

e Finally, the output layer tells us the result, such as what
number is drawn in our image (classification) or the
energy of a system (regression).
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Example: MNIST
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Types of networks

e Different types of Deep Learning, such as Fully Connected Network,
Convolutional Neural Neetwork and Recurrent Neural Network.

o All of the above depend on having image/matrix like structure. That isn't always
true.
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(a) Molecule
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(c) n-body System
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Graph network

We define our graph G to have a set of
attributes,u. Similarly, our nodes VV have

attributes v; and our edges E have
attributes ey,.




Update and aggregate functions
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(a) Edge update (b) Node update (¢) Global update




Unshared, deep GN stack
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Shared, recurrent GN stack
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Flavour Tagging/
Jet Classification

We can observe jets, sprays of particles
from a decay, but those for heavier
hadrons (B and C) are rarer.

Thus, when in an experiment we actually
do generate say a B or C-jet, we want to
know.

Flaovur tagging is the method by which
we do so.




ATLAS detector by
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GNN at the ATLAS detector
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