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Abstract

Not all Markov processes present Markovian features as observables. It is then desirable to infer parameter
values of the original process from some observed sequence. In this proceeding we discuss a method for
estimating the parameters of a Hidden Markov Model (HMM) from an observed sequence. The article
in focus approximates the Baum-Welch approach of estimating the parameters, yielding a more efficient
algorithm (the Segmented K-Means Algorithm). This is done considering only the most likely state sequence
in the likelihood instead of summing over all possible sequences.

Introduction

A quintessential task in science concerns the elu-
cidation of the relationship between observables of
natural phenomena and the underlying mechanisms
that produce these observables. A commonly used
model to describe real world stochastic phenomena
is Markov Chains in which states randomly evolve
over time with some probability, subject to the con-
straint that the probability of going into some other
state in the next time step only depends on the cur-
rent state and not previous states. The simplicity
and generality of this model makes it suitable to de-
scribe natural processes such as mutations on a DNA
string and Brownian motion [3]. However, not all
processes governed by Markov Chains necessarily ex-
hibit Markovian observables, as the process of the
mechanism may not be the same as the process pro-
ducing the observables [1]. In such cases the challenge
is to infer the structure of the original, or ”hidden”,
Markov process from the observed process. This is
the principal task of Hidden Markov Models (HMM).
In particular, it is the aim of this write up to convey
the application of HMM to infer the parameters of the
hidden states that constitute the underlying Markov
Chain from the observed non-Markov process using
an algorithm described by Juang and Rabiner [2].

Definition of Hidden Markov Models

In this proceeding we consider an HMM relating an
N-state first order Markov chain with states S =
[s0, s1...sN ] with a set of n observable states O =
[o0, o1...on] through some set of probability distribu-
tions B = [bs0, bs1...bsN ]. The Markov chain is de-

fined from two parameters: The transition matrix
and the initial state probability vector. The tran-
sition matrix is as usual defined as an N by N ma-
trix, A, with entrances ai,j that denote the proba-
bility of going from the state I to state j within the
Markov chain, while the initial state probability vec-
tor is defined as the probability of starting in a given
state π = [πs0, πs1...πsN ]. The entire HMMmay then
be completely specified from the Markov parameters
and the probability distributions relating the Markov
states with the observed states. The entire HMM is
then denoted λ = (A,π, B). The relation between
the different parameters is visualized in Figure 1.

Method for Inferring Parameters in
HMMs

A natural question to be answered concerns the infer-
ence of parameters in the HMM given some observed
sequence x = [x0, x1...xT ]. This is in essence a con-
ditioning problem. If we consider the case in which
the hidden states are equal to the observed ones the
probability of observing a sequence s is given by the
conditional probability in Equation 1.

P (s|A, π) = πs0

T∏
t=1

a(s(t−1),st) (1)

Since the observed states are dependent on a prob-
ability distribution relating the hidden states to the
observed states, the probability of observing the se-
quence x given a HMM λ is given by Equation 2.

f(x|λ) =
∑
s

πs0

T∏
t=1

a(s(t−1),st)bst(xt) (2)
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Figure 1: Depiction of an extended Markov process called a doubly stochastic HMM. Emitting observed
states, makes it more flexible and capable of capturing complex patterns in the data.

The goal is then to maximize this likelihood over
all given parameters in the model to determine
the most likely model. This may be done using
the Baum-Welch algorithm (sometimes called the
forward-backward algorithm) [2]. However, this op-
timization relies on summing over all possible states
which becomes computationally expensive and may
encounter numerical issues as well. Instead, the like-
lihood that is maximized is given in Equation 3.

maxs[f(x, s|λ)] = maxs[πs0

T∏
t=1

a(s(t−1),st)bst(xt)]

(3)
That is, rather than summing over all possible state
sequences only the most likely state sequence is con-
sidered. This likelihood is maximized using the seg-
mental K-means algorithm. The algorithm consist of
two steps: Segmentation and optimization. In the
first step, the likelihood in Equation 3 is found for
some initial model λ using the Viterbi algorithm [2].
In the second step the model parameters are varied so
as to maximize this likelihood and these parameters
are extracted as seen in Equation 4.

λ = arg max
λ

{max[f(x, s|λ)]
s

} (4)

These new parameters are now used in step one again.
This processes is repeated until the likelihood con-
verges within a desired threshold. It can be shown
mathematically that the algorithm is guaranteed to
converge, however not necessarily to the correct ”hid-
den” values [2]. While the algorithm requires less
computational power, it does come with a caveat: We
are not considering all possible paths in the hidden
state sequence, but only the most probable. This
may cause trouble in the event of multiple probable
paths. Therefore, the Baum-Welch algorithm is ex-

pected to perform better in general since every paths
is weighted with some probability.

Conclusion

HMM allows us to statistically model a system
assumed to be Markovian, but with unobservable
states. Assuming the structure of the HMM is known,
the problem lies in estimating the parameters of the
HMM model. In this write up, the method of the K-
means algorithm has been discussed. The K-means
is a method for faster estimation of the HHM param-
eters, than that of the Baum-Welch method. How-
ever, it results in a less precise algorithm, since not
all states are saved in the algorithm, and only the
most likely state-sequence is taken into account.
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