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Introduction
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Introductory example

To set the stage for this paper, we will start with a small example
where principal component analysis (PCA) can be useful. Red
wines, 44 samples, produced from the same grape (Cabernet
sawvignon) were collected. Six of these were from Argentina,
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Principal component analysis is one of the most important and powerful methods in chemometrics as well
as in a wealth of other areas. This paper provides a description of how to understand, use, and interpret
principal component analysis. The paper focuses on the use of principal component analysis in typical
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1 Ethanol TotalAcid VolatileA  MalicAcid pH Lactic Acid ReSugar CitricAcid | CO2 Density FolinC Glycerol Methanol TartaricA
2 7 02 1 8561 099 6092 9 016 174
3 378 05 026375 125 242 01817520 100 W64 1005 020 158
7 152 03951374 09 6359 1092 018 124
5 417 0,41 379,40 1,00 73,30 9,69 023 226
s 125 0141488 09 769 108 020 12
7 140 0,10 156,30 0,99 7L,79 1019 0,19 0,90
8 3,80 0,24 462,62 1,00 59,60 10,66 0,25 18
9 432 0,32 244,15 1,00 59,50 11,07 025 165
10 399 0,34 212,00 1,00 59,42 889 023 212
" 01341938 100 6385 1035 026 181
12 ng ¢ 099 70,10 1143 0,19 147
3 100 237 16 0; 21
14 1,00 55,07 9,59 025 136
15 0,99 63,04 11,28 0,14 1,01
16 1,00 6352 10,93 0,30 18
17 0,99 62,69 9,46 0,18 2,13
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Unaltered data

Objective:
® Reduce the dimensionality of a dataset
® Simplify complex datasets and make them more amenable to analysis.

® PCA captures the essential information in the data while removing redundant or noisy

information
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How to do it @

Standardize the data - Autoscaling

Compute the covariance matrix

Compute the eigenvectors and eigenvalues

Select the principal components

Create the loading (variables) and scores vector (samples)
Cross-validation

Project the data onto the principal components

© N o gk~ =

Interpreting results
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How to do it @ - Now with math
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= o’w = Cw, Eigenvalue problem (3)
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Selecting the relevant principal components

® Selecting components for visualization - ND — 2D/3D, in this case: 14D — 2D.

® Unless data trends are known beforehand, there may not be a precise way to
determine, what components to take a closer look into.

® Select the components with the greatest variance, as greater variance is a sign of
grouping trends in the data.
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Broken-stick distribution

® One way is to look at components with
variance greater than 1.

® Another way is to look at all
components above the so-called
"broken-stick” distribution:
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Figure: The eigenvalues ranging from greatest to

lowest and two acceptance parameters.
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Using cross-validation to select # of components

® \When the before-mentioned approaches
seem too ad hoc, other practices can be
used.

® One other is the use of cross-validation g,
and least-squares. &
® | eave out k samples and fit them to 08
the resulting principal components.
® Compute the sum of squared residues. 0, s s !

3 4
Number of components

® Repeating the process
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Projecting the data along the chosen principal components axes

® The wine samples plotted along the 4
principal component axes with greatest
variance.

® The labels correspond to the region of
origin

e A few conclusions can already be made
from this projection of the data:

® \Wine samples from Chile score
exclusively negative values in the
second principal component.

® Argentinian wine samples score
exclusively positive values in the fourth
principal components.

Scores on PC 2 (21.3%)
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Figure: The wine data plotted along the axes of
the 4 greatest principal components.
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What do the principal components actually mean?

To conclude anything quantitatively from the PCA analysis itself, the features must be
investigated.

® Are the data features themselves well-defined? How certain are the values of the
individual sample features?

® If good, then the weights of the respective features making up a principal component
directly translates the principal component values.

® A principal component could e.g. describe the ratio of methanol and ethanol.

® [f very little is known about the features, it is much more difficult.
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Further investigation of data after PCA

® QOther Machine Learning practices

® (Classification algorithms



Prediction is very difficult,
especially if it's about the future.

Niels Bohr



