The Viterbi algorithm-SOAP

Presentation made by Athene Demuth, Andreas Hermansen and Rune Kutchinsky

9. march, 2023.

UNIVERSITY OF COPENHAGEN

The article...

PHYSICAL REVIEW D 100, 023006 (2019)

Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals

Joe Bayley,* Chris Messenger, and Graham Woan

Institute of Gravitational research, University of Glasgow, Kelvin Building, G3 8QQ Glasgow, Scotland

(Received 1 April 2019; published 17 July 2019)

All-sky and wide parameter space searches for continuous gravitational waves are generally templatematching schemes which test a bank of signal waveforms against data from a gravitational wave detector. Such searches can offer optimal sensitivity for a given computing cost and signal model, but are highlytuned to specific signal types and are computationally expensive, even for semicoherent searches. We have developed a search method based on the well-known Viterbi algorithm which is model-agnostic and has a computational cost several orders of magnitude lower than template methods, with a modest reduction in sensitivity. In particular, this method can search for signals which have an unknown frequency evolution. We test the algorithm on three simulated and real data sets: gapless Gaussian noise, Gaussian noise with gaps and real data from the final run of initial LIGO (S6). We show that at 95% efficiency, with a 1% false alarm rate, the algorithm has a depth sensitivity of ~33, 10 and 13 $Hz^{-1/2}$ with corresponding SNRs of ~60, 72 and 74 in these datasets. We discuss the use of this algorithm for detecting a wide range of quasimonochromatic gravitational wave signals and instrumental lines.

DOI: 10.1103/PhysRevD.100.023006

Introduction to data: Time Series

In our case the time series is signal strength versus time

SFT - Short (time) Fourier Transform

Introduction to data: Time Series/ spectrogram

Hidden Markov Models

Viterbi
$$P(\vec{\nu}|D) = \frac{P(D|\nu)P(\nu)}{P(D)}$$
 (1.1)
Markov property $P(\vec{\nu}) = P(\nu_0) \prod_{j=1}^{N-1} P(\nu_j|\nu_{j-1})$ (1.2)
Log $\ln P(\vec{\nu}) = \ln P(\nu_0) + \sum_{j=1}^{N-1} \ln P(\nu_j|\nu_{j-1})$ (1.3)

The Viterbi algorithm

The basis of this Viterbi is

- Scaled log likelihood
- "Transition matrix"

$$T = \begin{bmatrix} 0, 1, 0 \end{bmatrix}$$

More on the less simple version later :)

4	5.0	1.0	1.0	1.0	1.0
S ³⁻	3.0	2.0	6.0	2.0	2.0
uan ²⁻	2.0	5.0	4.0	2.0	3.0
Ľ Ľ	0.0	1.0	1.0	5.0	3.0
0 -	1.0	2.0	0.0	1.0	1.0
	0	1	Time	3	4

 $\ln P \left(\nu_{j} - \nu_{j-1} = [D, C, U] | \nu_{j-1} \right) \propto T \equiv [0, 1, 0]$

Track construction

$$T = \begin{bmatrix} 0, 1, 0 \end{bmatrix}$$

4 -	5.0	1.0	1.0	1.0	1.0	4 -	5.0 (C)	7.0 (C)	9.0 (C)	15.0 (D)	18.0 (D)
CV S	3.0	2.0	6.0	2.0	2.0	C C	3.0 (C)	7.0 (U)	14.0 (D)	17.0 (C)	20.0 (C)
uanba	2.0	5.0	4.0	2.0	3.0	uan ² -	2 <u>.0</u> (C)	8.0 (C)	13.0 (C)	16.0 (C)	21.0 (D)
E H	0.0	1.0	1.0	5.0	3.0	<u>Е</u> Ц	0.0 (C)	3.0 (U)	9.0 (U)	18.0 (U)	<u>22</u> .0 (C)
0 -	1.0	2.0	0.0	1.0	1.0	0 -	1.0 (C)	4.0 (C)	5.0 (C)	10.0 (U)	19.0 (U)
L	0	1	Time	3	4	1 -	Ö	1	Time	3	4

Modifications of the algorithm

$$P(\nu,\nu^{(1)},\nu^{(2)}|D^{(1)},D^{(2)}) \propto P(\nu)P(\nu^{(1)},\nu^{(2)}|\nu)P(D^{(1)}|\nu^{(1)})P(D^{(2)}|\nu^{(2)})$$

- Correct for dobbler shift
- Noise reduction

Memory

- Corresponds to increased state space
- Transition matrix

Line aware statistics

- Measurement error
- Log odds

The Viterbi algorithm applied to simulated data

Results

Better computation Computational benchmarks Model Agnostic

Outlook /Perspectivation/ Other applications

Originally invented to decode noisy bit channels.

- https://ieeexplore.ieee.org/document/1054010/

Natural Language Processing

- https://arxiv.org/abs/cmp-lg/9406003

DNA Sequencing

- https://arxiv.org/abs/1012.0900

