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Abstract

In this write up, I present a short introduction to the PC-algorithm, a classic algorithm for causal discovery, and give a quick review of an
application in Earth system science by Runge et al.1.

Introduction

Understanding the causes behind the phenomena we observe
in nature has always been at the center of scientific pursuit.
Standard methods for discovering causality rely on experi-
ments in which we control for certain variables and observe
the outcome on others. In many cases, however, performing
experiments can be either unethical, impractical or impos-
sible. Luckily, the steady increase in computer power and
amount of observational data, now opens up for novel data-
driven methods for causal discovery that surpass common
correlation analysis techniques.

Graphs as causal networks In mathematics, a graph is a
set of points, called vertices or nodes, that are connected
by lines, called edges. If all edges of a graph are directed,
i.e. show an arrow in one direction, the graph is called
directed. If the graph contains no cycles, the graph is called
acyclic. Graphs that possess these two characteristics are
called Acyclic Directed Graphs, or DAGs for short (see Figure
1).

Figure 1: a: acyclic directed graph, b: cyclic directed graph (from [2]).

DAGs allow us to illustrate causal connections by using
nodes to represent relevant variables and linking them with
directed edges that indicate which variables directly affect
each other. And with a few assumptions, it is possible to
infer the DAG underlying a given data set and thus discover
the causal structure of an observed system. There are several
approaches to causal discovery and I will describe but one
in this write-up: the PC-algorithm (named after its authors
Peter and Clark)3.

PC algorithm

To understand the PC algorithm we must first understand
how nodes in a DAG can be either dependent, marginally
independent and conditionally independent.

Independence

The undirected graph X−Y signifies that X and Y are depen-
dent, while the directed graph X → Y signifies that X causes
Y. The graph X → Y → Z implies that X causes Y which
causes Z, but X does not cause Z. This can be demonstrated
by conditioning on Y, i.e. when we hold Y fixed, X and Z be-
come independent as the link or path between them has been
blocked. We say that X and Y are conditionally independent
on Z, and write X ⊥ Y | Z.

Figure 2a pictures a fork, where a variable Z cause two
variables X and Y. Given such a structure, X and Y are clearly
dependent, but conditioning on Z blocks the path between
them, making them independent; thus X ⊥ Y | Z.

Figure 2: (a) shows a fork and (b) a collider (adapted from [2]).

Figure 2b pictures a collider. Here two variables, X and Y,
join to determine the value of Z, and, as such, X and Y are
independent; X ⊥ Y. But if we condition on Z, then X and Y
become dependent. This is clear, since, as Z only depends on
X and Y and we hold the value of Z fixed, then any change
in X must be accompanied by a change in Y and vice versa.
Conditioning on Z thus unblocks the path. These examples
generalise into the concept of d-separation:

Definition 1 (d-separation, def. 1.2.3 in [4]): A path p is
blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork
A← B→ C such that the middle node B is in Z, or

2. p contains a collider A→ B← C such that neither B nor
any descendant of B is in Z.

If Z blocks every path between X and Y then X and Y are
d-separated conditional on Z.

In other words, and this is key, if we are unable to find a
set of nodes Z to condition on that blocks every path between
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nodes X and Y, then X and Y must have a direct connection.
If so, we say that X and Y are adjacent. With the tool of
d-separation, it is thus possible to determine using condi-
tional independence tests whether two nodes are causally
connected.

The different kinds and complexity levels of conditional in-
dependence tests are many. For now, you can simply imagine
that if a linear regression of X on Y given Z gives a slope of
zero, then X and Y are conditionally independent on Z.

Assumptions

The inference of causality from d-separation as explained
depends on three assumptions.

Assumption 1 (Causal Markov Condition): Every node in
a graph is conditionally independent of its non-descendants
given its parents3. This means that every node in the graph
is only directly influenced by its own parents and essentially
says that if variables are d-separated, then they are condition-
ally independent.

Assumption 2 (Faithfulness Condition): The faithfulness
condition states, in simplified terms, that independencies
must arise from structure and not by coincidence5. Two
variables may for instance appear independent if they are
connected by two opposite but equal effects that cancel each
other out.

Assumption 3 (Causal sufficiency): The set of observed
variables is causally sufficient3. The assumption of Causal
Sufficiency is satisfied if we have measured all the common
causes of the measured variables5.

Outline of the PC algorithm

The PC algorithm can be split into three steps: learning the
skeleton, identifying colliders, and orienting edges. Each step
is described in detail below, while a more rigorous description
is given in3.

1. We start with a complete, undirected graph (i.e. a graph
with undirected edges between all nodes) and recursively
removes edges based on conditional independence tests:
an edge between X and Y is removed, if we can find a
set Z such that X ⊥ Y | Z. The set Z must not contain
X or Y, but need only be a subset of adjacent nodes to
X and Y. The independence tests are ordered by levels,
starting with testing every pair of nodes on the empty set,
followed by sets of increasing size until the level exceeds
the number of adjacent nodes.

2. Now we identify colliders by checking for each triplet
of the form A− C − B, if C was in the conditional set
for A and B. If not, the triplet must be a collider (cf.
the definition of d-separation) and we orient the triplet
A→ B← C.

3. Since all colliders have now been identified, we can orient
each remaining triplet of the form A → B− C as A →
B→ C.

The PC algorithm is not perfect though. It will often not be
able to orient all edges, as some conditional independencies
can give rise to several graphs. X ⊥ Y | Z is for instance

compatible with X → Y → Z, X ← Y ← Z and X ← Y → Z.
Conditional independence tests themselves can be hard6, the
runtime is potentially exponential to the number of nodes7,
the causal sufficiency assumption can be difficult to justify,
and the algorithm is variable order-dependent, meaning that
it can yield different results depending on the ordering of the
conditional independence tests8. Various extensions to the
PC algorithm have since been developed to deal with these
issues.

Review

One of many fields in which of causal discovery algorithms
can be useful is Earth system science. In [1], Jakob Runge et al.
demonstrate an extended version of the PC-algorithm (called
PCMCI) that allows for identifying time lagged causal depen-
dencies in high dimensional, nonlinear time series. PCMCI
first applies the PC-algorithm to identify possible causal links
at a given time, and then conducts momentary conditional in-
dependence (MCI) tests between that time and a number of
earlier time steps to establish time-lagged causal dependen-
cies.

Figure 3[h] reproduces the results of an example from [1]
that compares PCMCI and a pure lagged correlation analysis
(Corr) for identifying the Walker circulation, a well under-
stood atmospheric circulation pattern in the tropical Pacific
Ocean: Warm surface air temperature anomalies in the East
Pacific (EPAC) are carried westward by trade winds across
the Central Pacific (CPAC)1. Then, the moist air rises over the
West Pacific (WPAC), and the circulation is closed by the cool
and dry air sinking eastward across the entire tropical Pa-
cific1. The CPAC region also links temperature anomalies to
the tropical Atlantic (ATL) via an atmospheric bridge1. Corr
results in a completely connected graph, while the PCMCI
correctly identifies the underlying causal structure, including
the link from EPAC→WPAC being mediated through CPAC,
as well as the one way influence of CPAC on ATL.

Figure 3: Correlation compared to PCMCI for identifying the Walker
circulation (from [1])

Since it is typically difficult to justify causal sufficiency,
especially in large, complex systems, direct links must always
be viewed in the light of possible unknown mediators1. How-
ever, the absence of a direct link can indeed be interpreted as
the absence of a direct causal relationship1.

Conclusion The original PC-algorithm provides an intuitive
introduction to causal discovery and lies at the foundation
of many contemporary methods for inferring causality from
data, a pursuit that seems very promising for improving
our understanding of complex systems, especially given the
ongoing growth in observational data.
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