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Abstract Within Wemberg's model of weak and electromagnetic mteracUons, we calculate the 
static quantities of the charged intermediate bosons We also prove that the neutrino 
charge remains zero in second order, and discuss ItS charge radius Finally, an unambig- 
uous calculation of the muon g-2 is presented All calculations are done usmg the n di- 
mensional regulanzatlon procedure of 't Hoolt and Veltman Our results support the 
claim that Wemberg's model is renormahzable 

1 INTRODUCTION 

Quite some time ago, Wemberg [1] umfied weak and electromagnetic interactions 
by proposing a spontaneously broken gauge theory in which a triplet of gauge fields 
couples to electronic lsospln and a singlet field to electronic hypercharge The Hlggs- 
Kibble phenomenon [2] then produces the masses of the leptons and the bosons 
and the couphngs among these particles 

The work o f ' t  Hooft [3] and Lee [4] revived interest m this model, as they were 
able to show that various similar models were renormahzable When Wexnberg [5] 
finally claimed that his model would lead to a fimte theory of electromagnetic and 
weak physical processes, it became clear that one would have to perform actual cal- 
culations of such processes to establish the vahdity of this conjecture 

Besides the leptons, the photon, and the charged mterme&ate bosons, the model 
also introduces a neutral vector and a neutral scalar boson, plus a whole series of 
couphngs among these particles As an unfortunate consequence of all tlus, the cal- 
culation of some experimentally relevant process, say/a decay to second order, re- 
quires the evaluation of about 20 Feynman &agrams, and before undertaking such 
a g~gantlc task, one would like to have some assurance that the result is hkely to be 
finite 
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For this reason, we looked at the static properties ot the particles in the theory, 
as the claculatlon of  such quantities is considerably simpler Among these are the 
anomalous magnetic moment ot the charged vector boson, W, and its anomalous 
quadrupole moment  Also, the self-charge ot the neutrino and the inuon magnetic 
moment were examined Only this last quanti ty has a certain experimental Interest 

One problem arising when doing such calculations is the quesUon ot how to treat 
originally divergent Feynman integrals by means of  a suitable regularlzatlon proce- 
dure In the conventional ~ hlnItIng procedure [6], one replaces the manifestly um- 
tary vector boson propagator by 

guy M 2 - ~k  2 te  
--I 

I~ 2 M 2 + le  

This procedure does not respect the Ward identities, however, and, furthermore, 
comphcates the algebra considerably since It introduces additional terms in the "yW 
vertices 

Recently, a new regularlzatlon scheme has been proposed by 't  Hooft and Velt- 
man [7] They calculate Feynman anaplltudes as a function ot the dlmenslonality,  
n, ot space-time Because ol the basic simplicity ot these amplitudes, an analytic con- 
tlnuation to complex n is feasible Divergences in the calculanon now show up as 
poles in the amphtudes tor real values of ~z 

The great advantages of  this method are (1) the fact that Ward ldentmes are pre- 
served in the normal parity case, (n) that the lntegrand is not changed, (ilI) that unl- 
tarity is explicit  in the limit pl ~ 4, and (iv) that all tormal manipulations, like shilt- 
mg of  variables and symmemc integration, are allowed 

One disadvantage of  tins approach appears when one at tempts to give a definition 
to 75 consistent with all Ward identities This IS particularly serious for the abnormal 
parity spInor loops A resolution ot this problem has recently been proposed by one 
ot us [8], which uses a modification of the n dimensional technique For the pur- 
poses of  this paper it IS possible to use a definition of  75 within the n dimensional 
scheme which is consistent with all the relevant Ward identities 

All calculations were performed using directly the Feynman rules derived by the 
Welnberg LagrangIan, where the vector meson propagator has the unitary form, but  
the bad asymptot ic  behaviour 

In sect 2 we present the calculation of the static quantities associated with the 
vector bosons, m sect 3, we examine the self-charge and the charge radius of neu- 
trino, whereas in sect 4, we discuss the muon anomaly Finally, we present the full 
Welnberg Lagranglan with all possible counter-terms in appendix A, and expose the 
relevant rules lor calculating in p~ dimensions In appendix B 
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2 STATIC Q U A N T I T I E S  OF V E C T O R  BOSONS 

Let eu, e~, e(s be the polarizat ion four-vectors o f  the pho ton ,  the outgoing and 
the incoming ~¢, and q,  p + Q, p Q their four -momenta  Obviously,  2Q = q Then,  

the most general CP mvarlant  vertex,  when all partxdes are one the mass shell, can be 

wri t ten in the form 

~{ua~ = le { A 12pug~¢ * 4(Qc~g¢~ u - Q~g~.)] 

+ 2(K - 1)(Qag~u - Q~g~u ) + 4(AQ/M2)puQaQ~} 

H e r e , A  is a real constant ,  ~ the anomalous magnenc  m o m e n t  oi the W, and AQ xts 

anomalous quadrupole  m o m e n t  

In Wemberg 's  model ,  the lowest order e lec t romagnenc  vertex o f  the W Is obtained 

by s e t t m g A  = 1, K = 1, and AQ = 0 

MOuc~3 = le [2pugc~ ~ + 4(Q~g3~ Q3g~u)] 

The statxc quann ty  of the W which is the easiest to calculate,  ~s no doubt  ItS anom- 

alous quadrupole  m o m e n t  There are five graphs which contr ibute  to 2xQ, and we 

list them in fig 1 Since we work  in the hmlt  Q2 = 0, we have no con t r Ibunon  from 

the two longitudinal  parts o f  the W propagator  do t ted  s imultaneously into the pho- 

ton ver tex This reduces the superflcml degree of  divergence to a logari thnuc one As 

there IS no counter - te rm in the Lagrangxan to subtract  out  a divergent part in 2xQ 

(see appendix  A), this quant i ty  has to be hnl te ,  ff the theory  Is renormahzable  

As pointed out  in the in t roduct ion ,  we use ' t  t toof t  and Vel tman ' s  n dimensional  

technique [7] to evaluate the Feynman  diagrams The only point  where we dltfer,  is 

that  we take as def imt ion  ot 3'5 an n dlmensxons a matr ix  which a n n c o m m u t e s  with 

all o ther  7 matrices This def imt ion  is perfect ly  consistent for normal  parity loops, 

and thus for calculating static quanti t ies  

The anomalous  quadrupole  m o m e n t  is indeed fxmte, and we give the c o n t n b u n o n s  

from the different  graphs 

3/ ~' ¥ Y ¥ 

Fig 1 f eynman diagrams contributing to the anomalous quadrupole moment ol the W 
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7 0~, GM2 1 f l  X 3 ( I _ x ) ( 8 + R )  
AQ - ~ , )  , A Q Z - 2 r r 2 v " ~ 3 R  dx x 2 + R ( 1  x)  ' 

0 

4 1 dx  x3(1 - x)  
AxQ ~ -  2rr2x/'-~ , AQ'# -  2rr2x/~ 0 x2 + u2(I -- x') '  

where the superscripts T, Z, ~, or so refer to the graphs m which a photon,  a neutral 
vector boson, a lepton, or a scalar boson )s exchanged, as indicated m fig 1 

We have introduced the Fermi constant,  G, and the quantities R = (Mz/Mw)  2 
and bt 2 = ( m J M w ) 2  Furthermore,  the expressmn for AQV, the sum of electron and 
muon loop contnbutxons, is vahd m the llmxt rnJM w -+ 0 only 

It had already been pointed out by Lee [9] that AQ'r had to be fimte for vector 
bosons with a bare gyromagnetlc ratm of  2, and this is exactly the case m Wemberg's 
model 

It is amusing to note that the lepton contribution wall be cancelled b y  that arising 
from the quark loops m a three-quartet model with fractmnal charges (2, 2 1 ~, 3, ~) 
for all quartets [10], provided one again neglects the quark masses compared t o m  w 

The other static quantxty of the W, whmh has to be flmte, is its dynamic anoma- 

Y V , 

,// : , , ~ ¥  ~\\ , 

WII]~/ Y IIW l , l~[ " ,  l /  

i" I" J" 
/ % • 

', 7 ,, ,"'" 
we z ",w we ', w,,' "~,w 
i t \ i I \~ / \ 

/ "; \, /' w/ ,,,w w," ',w ~ 

i,i "~1 t • 
w,,', ",w, y" ',w /w w,,,, ,"w " ",, 

Fig 2 Feynman diagrams contributing to the dynamic anomalous magnetic moment of the W 
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lous magnetic moment,  K This time, we have to calculate the ten diagrams of fig 2 
It turns out that ~ is indeed finite, although the superficial degree of divergence 

of some graphs is quadratic It is also interesting to see that the contributions from 
the photon graphs and the Z graphs are both divergent, but  that the W loop graph 
exactly cancels these divergences 

The different contributions now are 

KZW - _ _  

K. , /W _ Ot 5 
3 ' 7r 

1 

 Mev 2 I dx x 
2rr2x/'~ R 0 

8x3-8x2  +8x+R(x 3-  5 x 2 -  2x)+~R2(-x2 + S x - 4  ) 

x 2 + R(1 - x) 

K ~ _  1 

2rr2~V,~ 3 , 

x 2 d x x 2  - x + 2 -- ½U2(x - 1) K~ o -  _ _  

27r2X/~ x 2 + ,u2(1 -- x) 

We have made the same approximation, m~/M w ~ O, as in the AQ~ case, and, here 
too, addition of the quark quartets will cancel the lepton contribution 

The calculation of ~ is very involved, and this is where we fully appreciated the 
fact that the ' t  Hooft-Veltman regularlzatlon scheme does not make the algebra more 
complicated The number of terms one would have to handle in a ~ limiting proce- 
dure, e g ,  makes such a calculation not only quite tedious, but also rather obscure 

3 THE SELF-CHARGE OF THE NEUTRINO 

Because of CP and 75 lnvarlance, the neutrino only has one electromagnetic form 
factor, F(q2),  on mass shell, and the current matrix element can be written as 

M u = leF(q2)~7~(1 + tT5)u 

Since there are no counter-terms In the Lagrangian to reduce the neutrino charge 
to zero, we must have in all orders that F(0) = 0 In lowest order, there are two 
graphs (see fig 3) which might gave the neutrino a charge 

Using the n dimensional regularlzation procedure, It IS not difficult to show that 
the sum of the two diagrams, in the limit q ~ 0, can be written as a total derivative 
Evaluating this derivative then leads to a neutrino charge which remains zero 

One could ask whether the neutrino charge radius, defined as 
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Fxg 3 l~eynman dmgrams contributing to the sell-charge of the neutrino 
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Fig 4 Feynman diagrams which also contribute to the charge radius of the neutrino, but not to 
its self-charge, because of gauge lnvanance 

( r 2 ) = 6 OF(q--2__~) 

Oq2 qa =0 ' 

takes on a well defined value m this model 
We remark that the charge radius of the neutrino is not a static quantity, since one 

cannot measure it with an external electromagnetxc field If, however, one wants to 
measure the form factor wlth virtual photons, m elastic ev scattering, say, then one 
also has to consider the competing processes hke two Z or two W exchange and ra- 
diative corrections to smgle Z exchange Indeed, m Wemberg's model, all pamcles 
which couple to the photon also couple to the L, 

In order for the theory to be consistent, only the total scattenng S-matrix element 
has to be finite, and not necessarily F ' (0 )  Indeed, we find that F ' (0 )  is dwergent 

and can, therefore, not be a physical quanti ty m this theory It IS clear that the cal- 

culation of elastic ev to fourth order will be another crumal test of the model 

4 THE MUON ANOMALY 

Besides the well-known c~/2~r term for the anomalous magnetic moment  of the 
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• / ¥ ~/ 

Fig 5 Feynman dmgrams contributing to the anomaly of the muon 

muon, Welnberg's model also predicts contributions m second order from the graphs 
of  fig 5 

Here, we are faced with an ambiguity m the regulanzatlon scheme As explained 
in appendix B, the vector algebra and the Dlracology has to be done in n dimensions 
Unfortunately, no generalization of  3'5 to n dimensions exists which preserves the 
Ward identities for the axial current in n dimensions 

't  Hooft  and Veltman [7] suggest a 3'5 which anti-commutes with the first four 3' 
matrices and commutes with the others This definition of 3'5 does not preserve all 
the Ward identities associated with the splnor line As a result, the longitudinal parts 
of  the W and Z propagators give addmonal anomalous contributions, which are fi- 
rote 

If, however, one retains a 3'5 which anti-commutes with all 3' matrices, then no 
such anomalies occur, and agreement is found with other calculations of  the muon 
anomaly [11-13]  Indeed, the different contributions turn out to be 

Gm 2 z _  _a ( m  x2 Gm 2 ( 2 )  
a v  _ u I0  I -l- ~ 4 1 - -  

. 87 r2x /~- '  a - - l r  5 \ M z  / 87r2x/~ 3 

Gm 2 f l  x2(2 - x) 

a ~°=~ 87r2x/~ 2 0  j d X x 2 + r ( 1 - x ) '  

to the graphs of  fig 5 Here, r = ( m e / m u )  2 is a free parameter whxch corresponding 
could be of  order unity, m which case a~ becomes of  the same order of  magnitude 
as a~ and a Z It is evident, from the mere size of  these contributions (~  10-9), that 
the agreement pure QED calculations of  the muon anomaly and experiment is not 
upset by these weak effects Conversely, no hmlt on m~ can be deduced from the 
present or planned experiments on the muon anomaly 

Since the ~ hmltmg procedure is not an mvarlant one wxth respect to the gauge 
transformations of  the charged gauge fields, the agreement we find should not be 
taken too seriously It is clear, however, that the regularlzatlon procedure must pre- 
serve all the relevant Ward identities, and, for the cases considered here, our regular- 
lZatlon scheme works The treatment we propose is justified by the existence of a 
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fully consistent regularlzatlon procedure, which coincides with the above scheme for 
these calculations [8] 

5 CONCLUSIONS 

By Introducing a 3, 5 which antlCOlmnutes with all the other matrices in n dimen- 
sions we modified the ' t  Hooft-Veltman regularlzatlon scheme while preserving all 
the vector Ward identities We were then able to calculate the static quantities of  the 
particles In Weanberg's model 

We found that the anomalous quadrupole moment  and the dynamic g - 2  of  the 
charged vector bosons were finite, and we calculated their values We then showed 
that the neutrino charge remains zero in second order, and explained why the neu- 
trino charge radius IS not  a physical quant i ty  in Weinberg's model Using our regular- 
Izatmn scheme, we gave a consistent calculatmn of  the weak contributions to the 
anomaly of  the muon, which confirms certain results given m the hterature 

All those calculations support  the conjecture that Weinberg's model of  weak and 
electromagnetic interactions of  leptons, vector and scalar bosons IS indeed renormal- 
izable 

APPENDIX A 

If the Welnberg theory IS to describe a renormahzable theory of  weak Interact ions 
then physical quantities must become finite through the use of  counter-terms gener- 
ated by the original Lagranglan The local gauge symmetry of  the Wexnberg Lagran- 
glan severely restricts the form of  these counter-terms 

At the one-loop level, many physical quantmes must be well defined and fimte, 
even though power counting suggests that counter-terms may be necessary The 
quantities computed in the text using the ' t  Hooft-Veltman regularazation scheme 
are of  this type In this appendix, we exhibit  the most general structure of  counter- 
terms possible for the Welnberg Lagranglan used for the computat ions in the text 

The Welnberg Lagranglan obtained from ref [1] is given In eq (A1) We have In- 
cluded all renormallzatlon constants to generate the counter-terms We have 

1_ = - - l  z 1 ( o u A  v -- OvA u + g A  X A v )  2 - 1Z2(OvB v 0vBu)2 

+ Z3LITU(Ou - l t g x  A u - l t g ' B ) L  + Z4/~tTu(0 u - t g ' B ) R  

+ Z  5 [ ( 0  --½rex A u + ½ t g ' B ) @  2 

-- Ge(ff.tpR + RqgL ) - U 2 ~ ¢  - h0(~-,,o)2 (A 1) 
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The renormahzatlon parameters Z 1, ,Z 5 and the constants Ge, ~2, h0 generate 
the counter-terms whale g and g' are fimte quantities whose precise defimtlon depends 
upon how the fimte normahzatlon of Z1, ,Z 5 is chosen 

In this Lagranglan, the local gauge symmetry is evident However, the calculations 
in the text were made using a Lagrangmn obtained from (A1) by removmg the redun- 
dant degrees of freedom of the fields This new Lagrangmn IS mamsfestly umtary and 
is obtained from (A1) by the following substitutions 

A l+tA2=,v /2W~ A3= W3=(g2+g'2) -~(gZ _g 'Au )  
I.z g t  ' I,t I.~ 

B u = ( g 2 + g ' 2 ) - l ( g ' Z u + g A u ) ,  L = ~(1 + r)'5) ( S e ) ,  

R=~(1-t3,5)(e), ¢ = ~ 2 ( X + ¢ ) ( ~ )  (A 2) 

With these defimtlons, the Lagranglan (A 1) may be written m terms of the free 
and interaction Lagranglans gwen m (A 3) and (A 4) 

1 ~ 2 2 Lo---lla,,w~ +- ~ ' ~  12 + M2wlW~ 12- ~(~Z,~-~ z)2 + ~Mz(Z) 

-- l (auA v - avAu)2 + !(02,,utp "~2, -- ½gt2tp 2 

+k-(t 7 8 - m ) e + v t 7  a~-(l+tTS)V, (A 3) 

,4---+ 

W+W3VlaU L I =Zig { W 3 W v / ~  [¥+v + 14/-[,l/+Vla/~ 14/3-t- [4/7} /,l u gt 

+ Zlg2 { ~ ( w ~ w - . ) 2  , +2  3 2  + - ~ ( W u )  ( W v ) 2 + (  -- ~, = - w )  ( w w  ~) ( w 3 w - ~ ) ( w 3 w + ~ ) }  

+Z3 2X/2 {v-3'u(1 + 

+ Z  3 lg(g2 + g,2)~ ~,,t,u(1 + t,y5)vZ u 

1 g,2 _ g2 
+ 0 - " / ~  {~Z 3 - - - - . ~ q  (1 +l '¥5)+1Z4 g,2 , (1 - l ' / 5 )  } e 

(g2 + g,23~ (g2 + g,2)~ 

1 _ _ g g ' ,  (1 + t')'5) + -~Z 4 gg'-- , (1 - t"/5) } e - e')'UAu {2Z3 (g2 + g,2)~ (g2 + g,Z)~- 

G e 
- ~/~ ~e~o + Z 51 g21W+ u 120(2 X + tp) 

+ Z5 ~ (g2 + g,2) (Z u)2 90(2X + ~p) - h 0Xgo 3 - ¼h 0~o 4 
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-~(Z 1 I)]8 W;- 3vW~12+ IWII2  {_Mw2 +±4Z5g2X2} 

- ¼(ZI - l)(O~zwB-v 3vW3)2 - ~(Z2 1)(3gBv - 3 v ~ ) 2  

I 2 9 1 2 +2(Z) {-M[+Z5a(g +g'2)X2} 

+(Z 3 1)(?l~f 03(1 + z T s ) e + ( Z  4 - l)~tD, 0½(1 -z~ys)e 

n GeX "~ 
+(z  3 1)~,~ a ~ ( l + , ~ 5 > +  , ~ - ) e e  

+ (Z5 - I)½(3. s°)2 + ½(gt2 -/JO -- 3h0X2)¢2 

In this formulat lon,g ,g '  and X are constants, while ZI, ,Z5, G e and h 0 are re- 
normahzanon constants The physical masses, M 2,  M 2 m 2 and/12 are not free para- 
meters, but must be determined from the zeros ot the appropriate self-energy func- 
tions The ~2 IS also not independent, but is determmed by the condlnon that can- 
cels the ¢ meson tadpoles This condmon reads 

0 = -~02X ZshoX3 

- (0l {3h0X¢2 + h09o3 ¼Z5(g2 + g'2)(Zu)2(X + ~p) (A 5) 
G 

- ~-zsgal ~;J2(x + ¢) + ~ ee} 10> 

Addmonal (fimte or lnflmte) wave funcnon renormahzanons are requtred m or- 
der to define properly normahzed S-matrix elements * 

APPENDIX B 

In this appendix we briefly outhne the use we made of the 't Hooft-Veltman re- 
gulanzanon scheme [7] 

Suppose that, instead of working m the four dimensions of ordinary space-time, 
one were to calculate In n/> 4 dimensions To evaluate Feynman diagrams in that 
case, one would have to consider integrals ot the type 

I dnk 
l (n ,  m )  = 1 (B 1 ) 

(2rr) n [k 2 - L + re] m 

For n ~ 2rn, the integral ex'sts and is given by 

I (n ,m)=-- - t l -2m L {n m l '(m tn)  
(2Vc~),, P(m) 

* We thank T Appelqmst and G t' Hooft for dlscusstons on this point 

(u 2) 
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For the cases in which the integral does not exist, the right-hand side of eq (B "~) 
IS taken as the definition ol the integral 

One can then show that all formal manipulations, like symmetric integration, 
partial integration, and shifting of integration variables are allowed, provided one 
consistently uses the relation g~vg uv = n 

Divergences in integrals will now show up as poles along the real axis, e g ,  a log- 
arithmic integral has poles at n = 4 + 2 m, a quadratic one at n = 2 + 2 m where m is 
a non-negatlve integer These singularities arise from the V function 

In practical calculations of Feynman amplitudes, one now proceeds as follows 
(1) perform all the Dlrac algebra keeping in mind that guvg  *zv = n,  

(n) symmetrIze the lntegrand using rules like 

k _ l  k2g.v 
kt v H 

(Ul) perform integrals over the loop momenta using the definition of  eq (B 2), 
(iv) take the limit n ~ 4 If the Feynman amplitude is finite, there will be no singu- 

larity at n = 4 
As an example, let us consider the calculation ot AQ'r, arising from the first dia- 

gram m fig 1 This electromagnetic vertex is gwen by 

f dtZk 
,~t ~ = e 3 _ _  Vxo P m ( k  + Q)Wm~rP°Y(k  -- Q)Xv~,,/ 

(2rr) n 

X gVX 1 1 

(p k) 2 [ ( k + Q ) 2  M 2]  [fk 0 )  2 - M  2]  ' 

where 

Pot  (z) = g o ,  l o l r / M 2 '  

Vxoc, = (k + p + 2Q)xgc, ° - 2(k + Q)c~gxo (2p + Q - k)ogc~ x , 

Wuo r = 2kugor  - (k 3Q)rgpu (k + 3Q)pgru,  

Xv~ 7 = (k + p - 2Q)vg~y - 2(k Q)~gyv - (2p - Q k)yg3v  

We are only interested in that part of  Mua ~ which is proport ional  to PuQc~QcJ, and 
then only in the limit Q2 = 0 

The term In 1/M 4 from the longitudinal parts of  the W propagators does not con- 
tribute, as it IS proport ional  to Q2 

The term in 1/M 2 leads to the expression 

k ( k + Q ) ~ ( k  Q)~[ZM 2 + 4 p  k - 4 k 2 ] ,  

when all dummy indices are summed over Similarly, one finds for the gargo~ term 
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(8n - 14)k (k + Q)a(k - Q)(~ + 32pu(k Q ~ - k~Qa) + 64kuQaQ ~ 

Since we only  have to consider  terms up to  second power  in Q, we can replace 

1 1 + 4 ( k Q )  2 
+ 

[(k - Q)2 _ M2w ] [(k + Q)2 _ M2w ] [k 2 __ M212  [k 2 _ M214  

Combining  denomina to r s  wi th  the F e y n m a n  tr ick,  one finds for the over-all de- 
nomina to r  

D = ( k - p ( 1 - x ) )  2 M2x 2==-I 2_MW x2 2 

Making the shift ,  pe r forming  symmet r i c  in tegra t ion ,  and using eq (B 2) we have 

1 

le3 f 
Mua~ ~ (2X/~)--~ PuQ~Q~ 0 

dx {[Mwxl n-6x3(1 - x ) ( 8 n  14)F(3  - ½n) 

-~[Mwxln-6x3(1 -x ) (8n  14)(1 - ½n)(2 - i n ) F ( 1  ½n) 

1 [2M2(Mwx)n-6x3(1 - x ) P ( 3  - ½n) 

2 2 n - 6  3 - ~Mw(Mwx ) x (1 - x ) ( l  - ½n)(2 - ½n)F(1 - ½n) 

+ 2(Mwx)n-4 x2(1 - xl_P(2 -- i n )  

- 2(Mwxl"-4 x2(1 - x ) ( 1  - ½ n ) F ( l  - ~-n)]} 

The P funct ions  which have poles for n -- 4 can be shown to cancel,  and the whole  
express ion becomes  finite for n = 4 

1 
re3 2 

M u ~  161r 2(p~QaQJMw) I dx {18x( l  - x )  - 6x(1 - x )  

0 
- [ 2 x ( 1 - x ) - ~ x ( 1 - x ) ] }  - 'e3 PuQ~Q~ 32 

18 ) 
1 67r 2 M 2 

W 

f rom which follows 

A Q ' r -  ~ 
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