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Abstract Within Weinberg’s model of weak and clectromagnetic interactions, we calculate the
static quantities of the charged intermediate bosons We also prove that the neutrino
charge remains zero in second order, and discuss 1ts charge radius Finally, an unambig-
uous calculation of the muon g—2 1s presented All calculations are done using the n di-
menstonal regularization procedure of °t Hooft and Veltman Our results support the
claim that Weinberg’s model 1s renormalizable

I INTRODUCTION

Quite some time ago, Weinberg [1] unufied weak and electromagnetic interactions
by proposing a spontaneously broken gauge theory 1n which a triplet of gauge fields
couples to electronic 1sospin and a singlet field to electronic hypercharge The Higgs-
Kibble phenomenon [2] then produces the masses of the leptons and the bosons
and the couplings among these particles

The work of ’t Hooft [3] and Lee [4] revived interest 1n this model, as they were
able to show that vartous stmilar models were renormalizable When Wenberg [5]
finally claimed that his model would lead to a finite theory of electromagnetic and
weak physical processes, 1t became clear that one would have to perform actual cal-
culations of such processes to establish the validity of this conjecture

Besides the leptons, the photon, and the charged intermediate bosons, the model
also introduces a neutral vector and a neutral scalar boson, plus 4 whole series of
couplings among these particles As an unfortunate consequence of all this, the cal-
culation of some expenmentally relevant process, say u decay to second order, re-
quires the evaluation of about 20 Feynman diagrams, and before undertaking such
a gigantic task, one would like to have some assurance that the result 1s likely to be
finite

* Alfred P Sloan Research Fellow, on leave trom the Department of Physics, Stanford Univer-
sity
** Aangesteld Navorser, N F W O, Belgium



320 W A Bardeen ct al, Static quantities

For this reason, we looked at the static properties ot the particics in the theory,
as the claculation of such quantities 1s considerably simpler Among these are the
anomalous magnetic moment ot the charged vector boson, W, and 1ts anomalous
quadrupole moment Also, the self-charge of the neutrino and the muon magnetic
moment were examined Only this last quantity has a4 certain experimental interest

One problem arising when doing such calculations 1s the question of how to treat
onginally divergent Feynman mntegrals by means of a suitable regularization proce-
dure In the conventional £ imiting procedure [6], one replaces the mamifestly uni-
tary vector boson propagator by
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This procedure does not respect the Ward 1dentities, however, and, furthermore,
complicates the algebra considerably since 1t introduces additional terms in the YW
vertices

Recently, a new regularization scheme has been proposed by ’t Hooft and Velt-
man [7] They calculate Feynman amplitudes as a function ot the dimensionality,

1, of space-time Because of the basic simplicity of these amplitudes, an analytic con-
tinuation to complex # 1s feasible Divergences in the calculation now show up as
poles in the amplitudes tor real values of #

The great advantages of this method are (1) the fact that Ward 1dentities are pre-
served 1n the normal parity case, (1) that the integrand 1s not changed, (1) that uni-
tarity 1s explicit in the limit 72 = 4, and (1v) that all formal manipulations, like shitt-
ing of vartables and symmetric integration, are allowed

One disadvantage of this approach appears when one attempts to give a definition
to y5 consistent with all Ward identities Thus 1s particularly serious for the abnormal
parity spinor loops A resolution ot this problem has recently been proposed by one
of us [8], which uses a modification of the n dimensional technique For the pur-
poses of this paper 1t 1s possible to use a definition of y5 within the n dimensional
scheme which 1s consistent with all the relevant Ward 1dentities

All calculations were performed using directly the Feynman rules derived by the
Weinberg Lagrangian, where the vector meson propagator has the umtary form, but
the bad asymptotic behaviour

Insect 2 we present the calculation of the static quantities associated with the
vector bosons, 1n sect 3, we examine the self-charge and the charge radius of neu-
trino, whereas 1n sect 4, we discuss the muon anomaly Finally, we present the full
Weinberg Lagrangian with all possible counter-terms in appendix A, and expose the
relevant rules for calculating in n dimensions 1n appendix B
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2 STATIC QUANTITIES OF VECTOR BOSONS

Let €, €,, €5 be the polanization four-vectors of the photon, the outgoing and
the incoming v, and ¢, p + Q, p — Q their four-momenta Obviously, 2Q =g Then,
the most general CP invariant vertex, when all particles are one the mass shell, can be
written 1n the form

M[.L()tﬁ =le {A [2pﬂgaﬁ ¥ 4(Qa,gﬁ# - Qﬂga“)]

20k = 1)(Qy85, — 0y8,,) * 4A0/MIP,0.0)

Here, A4 1s a real constant, x the anomalous magnetic moment of the W, and AQ 1ts
anomalous quadrupole moment

In Weinberg’s model, the lowest order electromagnetic vertex of the W 1s obtained
by setting4 = 1,k = 1,and AQ =0

0 _
Mo = 1€120,8,5+ HQ, 8, — 038,,)]

The static quantity of the W which 1s the easiest to calculate, 1s no doubt 1ts anom-
alous quadrupole moment There are five graphs which contribute to AQ, and we
hist themin fig 1 Since we work 1n the limit Q2 = 0, we have no contribution from
the two longitudinal parts of the W propagator dotted simultaneously into the pho-
ton vertex This reduces the superfiaal degree of divergence to a loganithmic one As
there 1s no counter-term 1n the Lagrangian to subtract out a divergent part in AQ
(see appendix A), this quantity has to be finite, if the theory 1s renormalizable

As pointed out in the introduction, we use 't Hooft and Veltman’s n dimensional
technique [7] to evaluate the Feynman diagrams The only point where we ditfer, 1s
that we take as definition of y5 in # dimensions a matrnix which anticommutes with
all other v matrices This definition 1s perfectly consistent for normal parity loops,
and thus for calculating static quantities

The anomalous quadrupole moment 1s indeed finmte, and we give the contributions
from the different graphs
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Fig 1 Ieynman diagrams contributing to the anomalous quadrupole moment of the W
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where the superscripts v, Z, £, or ¢ refer to the graphs in which a photon, a neutral
vector boson, a lepton, or a scalar boson s exchanged, as indicated 1n fig 1

We have introduced the Fermi constant, G, and the quantities R = (M /My )?
and u? = (mxo/MW)2 Furthermore, the expression for AQ¥, the sum of electron and
muon loop contributions, 1s valid m the limit m /My, > 0 only

It had already been pointed out by Lee [9] that AQ” had to be finite for vector
bosons with a bare gyromagnetic ratio of 2, and this 1s exactly the case in Weimnberg’s
model

It 1s amusing to note that the lepton contrnibution will be cancelled by that arising
from the quark loops 1n a three-quartet model with fractional charges (3,2, -1, -1)
for all quartets [10], provided one again neglects the quark masses compared to My,

The other static quantity of the W, which has to be finite, 1s 1ts dynamic anoma-

Fig 2 Feynman diagrams contributing to the dynamic anomalous magnetic moment of the W
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lous magnetic moment, k This time, we have to calculate the ten diagrams of fig 2
It turns out that k 1s indeed fintte, although the superficial degree of divergence
of some graphs 1s quadratic It 1s also interesting to see that the contnibutions from
the photon graphs and the Z graphs are both divergent, but that the W loop graph
exactly cancels these divergences
The different contributions now are

a
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We have made the same approximation, my/My, ~ 0, as in the AQ* case, and, here
too, addition of the quark quartets will cancel the lepton contribution

The calculation of k 1s very involved, and this 1s where we fully appreciated the
fact that the ’t Hooft-Veltman regularization scheme does not make the algebra more
complicated The number of terms one would have to handle in a £ hmiting proce-
dure, e g , makes such a calculation not only quite tedious, but also rather obscure

K‘p:

3 THE SELF-CHARGE OF THE NEUTRINO

Because of CP and 15 invariance, the neutrino only has one electromagnetic form
factor, F (q2), on mass shell, and the current matnx element can be written as

M, = zeF(qz)H'y“(l +iyg)u

Since there are no counter-terms in the Lagrangian to reduce the neutrino charge
to zero, we must have 1n all orders that F(0) = 0 In lowest order, there are two
graphs (see fig 3) which might give the neutrino a charge

Using the n dimensional regulanization procedure, it 1s not difficult to show that
the sum of the two diagrams, in the limit g — 0, can be written as a total derivative
Evaluating this dervative then leads to a neutrino charge which remains zero

One could ask whether the neutrino charge radius, defined as
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Fig 4 Feynman diagrams which also contribute to the charge radius of the neutrino, but not to
its self-charge, because of gauge invanance

NI ,
aq2 =0
takes on a well defined value 1n this model
We remark that the charge radius of the neutrino 1s not a static quantity, since one
cannot measure 1t with an external electromagnetic field If, however, one wants to
measure the form factor with virtual photons, 1n elastic ev scattering, say, then one
also has to consider the competing processes like two Z or two W exchange and ra-
diative corrections to single Z exchange Indeed, in Weinberg’s model, all particles
which couple to the photon also couple to the 4

In order for the theory to be consistent, only the total scattering S-matrix element
has to be finite, and not necessarily F'(0) Indeed, we find that F'(0) 1s divergent

and can, therefore, not be a physical quantity n this theory It 1s clear that the cal-
culation of elastic ey to fourth order will be another crucial test of the model

4 THE MUON ANOMALY

Besides the well-known «/27 term for the anomalous magnetic moment of the
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Fig 5 Feynman diagrams contributing to the anomaly of the muon

muon, Weinberg’s model also predicts contributions in second order from the graphs
of fig 5

Here, we are faced with an ambiguity 1n the regulanization scheme As explamned
1in appendix B, the vector algebra and the Diracology has to be done 1n n dimensions
Unfortunately, no generalization of v to #n dimensions exists which preserves the
Ward identities for the axial current in n dimensions

’t Hooft and Veltman [7] suggest a 5 which anti-commutes with the first four y
matrices and commutes with the others This definition of v5 does not preserve all
the Ward 1dentities associated with the spinor line As a result, the longitudinal parts
of the W and Z propagators give additional anomalous contributions, which are f1-
nite

If, however, one retains a y5 which anti-commutes with all ¥ matrices, then no
such anomalies occur, and agreement 1s found with other calculations of the muon
anomaly [11—13] Indeed, the different contributions turn out to be

Gm? o m 2 Gm? 2
2T st () ()
* g2 . M, 873/2 R

2 1
a¥= ——Gm“ 2 J dx ————x2(2 —%)
" ogri2 x2+ r(l —x)

corresponding to the graphs of fig 5 Here,r = (m w/m M)Z 1s a free parameter which
could be of order unity, in which case a¥ becomes of the same order of magnitude
asa} and a% It 15 evident, from the mere size of these contributions (~ 10-9), that
the agreement pure QED calculations of the muon anomaly and experiment 1s not
upset by these weak effects Conversely, no limit on m,, can be deduced from the
present or planned experiments on the muon anomaly

Since the £ limiting procedure 1s not an invariant one with respect to the gauge
transformations of the charged gauge fields, the agreement we find should not be
taken too seriously It 1s clear, however, that the regulanization procedure must pre-
serve all the relevant Ward 1dentities, and, for the cases considered here, our regular-
1zation scheme works The treatment we propose 1s justified by the existence of a
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fully consistent regularization procedure, which coincides with the above scheme for
these calculations [8]

5 CONCLUSIONS

By introducing a y5 which anticommutes with all the other matrices in # dimen-
stons we modified the ’t Hooft-Veltman regulanzation scheme while preserving all
the vector Ward 1dentities We were then able to calculate the static quantities of the
particles in Weinberg’s model

We found that the anomalous quadrupole moment and the dynamic g—2 of the
charged vector bosons were finite, and we calculated their values We then showed
that the neutrino charge remains zero 1n second order, and explained why the neu-
trino charge radius 1s not a physical quantity in Weinberg’s model Using our regular-
1zation scheme, we gave a consistent calculation of the weak contributions to the
anomaly of the muon, which confirms certain results given 1n the literature

All those calculations support the conjecture that Weinberg’s model of weak and
electromagnetic interactions of leptons, vector and scalar bosons s indeed renormal-
1zable

APPENDIX A

If the Weinberg theory 1s to describe a renormalizable theory of weak nteractions,
then physical quantities must become finite through the use of counter-terms gener-
ated by the original Lagrangian The local gauge symmetry of the Weinberg Lagran-
gian severely restricts the form of these counter-terms

At the one-loop level, many physical quantities must be well defined and fin1te,
even though power counting suggests that counter-terms may be necessary The
quantities computed 1n the text using the "t Hooft-Veltman regulanization scheme
are of this type In this appendix, we exhibit the most general structure of counter-
terms possible for the Weinberg Lagrangtan used for the computations 1n the text

The Weinberg Lagrangian obtained from ref [1]1s given ineq (A1) We have in-
cluded all renormalization constants to generate the counter-terms We have

Z 1 2 1 2
L=12,03,4,~ 8.4, +ed X A ) ~1Z,0,8,~358)
+ Z31j17“(au —tigt A, - élg'Bu)L + 24517“(8” - zg'BM)R
+Z10, - igr A+ %zg'Bﬂ)@lz

~ G (LyR +Ryl) — 1250 — h (B0)* (A1)
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The renormalization parameters Zy, ,Zs and the constants G, ”0’ hq generate
the counter-terms while g and g’ are finite quantities whose precise definition depends
upon how the finite normalization of Z, ,Z s 15 chosen

In this Lagrangian, the local gauge symmetry is evident However, the calculations
in the text were made using a Lagrangian obtained from (A1) by removing the redun-
dant degrees of freedom of the fields This new Lagrangian 1s manisfestly unitary and
1s obtained from (A1) by the following substitutions

1y, 422 5 3 3o (024t o
A RIAZ=N2W,, A= Wu—(g +8'9) 7 (eZ,~¢'4)),
v,
— (o2 + o2y (o -1
B, =(g°+g) 7 (gZ,tg4,), 2(1+w5)< >
“11-m)@. e=Z0+o)() (a2)
2 5 \/i 1

With these defimitions, the Lagrangian (A 1) may be written in terms of the free
and interaction Lagrangians given 1n (A 3) and (A 4)

- 1 +12 2 +2 1 21342 2
o, Wi —3 Wikt + MyIWi P —3(8.Z,—03,Z ) +IMIZ)
~ 53,4, - 9,4 )% +1(3,9)* — St

te(y 0-mye+vry 3(1+myv, (A3)
L =Zg (W3W-10F W™ + W—W ™18 Wi+ Wrwiah W
I lg { uov u d v u ! v
+Z8 BOEWT - JWHXW,? + (W3 (Wiw ™) — (W3w ) (WIw ™))
+Z, 2"0*“\/5 (TP (L +1r)eW! +EvH(1 + iy}

1 _
+Z358(8% + 8y Ty ML+ 1z,

'2
g
+e'y“Z {4Z —(1+175)+ = (1 —174)} €
Y@ re) Y@ +g
_EyﬂA“ {%23 (_ZLQ)l Q +175)+%Z4(2—g_’_2?( —175)} e
gh gy gt +g%)
G
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+(Zy— Dy 35(1+iyv+ - \7—;>?e
F(Zs— D@ + 11?5 — 3hA)e?

In this formulation, g, g" and X are constants, whlle Zl, ,Zs, Go and Ay are re-
normalization constants The physical masses, MW,MZ m? and u? are not free para-
meters, but must be determned from the zeros ot the appropriate selt-energy func-
tions The ,u(z) 1s also not independent, but 1s determined by the condition that can-
cels the p meson tadpoles This condition reads

0=—u\  Zh)\
= O {3hQ0? + g - 5Zu(8% +8')(Z ) (N + ) (A5)

G
—1Zgt W 12(x+¢)+\[ ée} 10

Additional (finite or infinite) wave function renormalizations are required in or-
der to define properly normalized S-matrix elements *

APPENDIX B

In this appendix we briefly outline the use we made of the 't Hooft-Veltman re-
gulanzation scheme [7]

Suppose that, instead of working in the four dimensions of ordinary space-time,
one were to calculate in n 2 4 dimensions To evaluate Feynman diagrams in that
case, one would have to consider integrals ot the type

H
[(n,m)=Jdk ! (B 1)
@n)" (k% — L +1e]™
For n < 2m, the integral ex'sts and 1s given by
1 2m . ~ L
[(n.m) = L] (’;1 2'1) (B 2)
vy (m)

* We thank T Appelquist and G t’ Hooft for discussions on this point
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For the cases in which the integral does not exist, the right-hand side of eq (B ?)
1s taken as the definition of the integral
One can then show that all formal manipulations, like symmetric integration,
partial integration, and shufting of integration variables are allowed, provided one
consistently uses the relation gwg“" =n
Divergences 1n integrals will now show up as poles along the real axis, e g , a log-
arithmic integral has poles at n = 4 + 2 m, a quadratic one atn = 2 + 2m where m 15
a non-negative integer These singulanties arise from the I' function
In practical calculations of Feynman amplitudes, one now proceeds as follows
(1) perform all the Dirac algebra keeping in mind thatg, g* =n,
(u) symmetrize the integrand using rules like
Kk »1 k%
v Cw
(1) perform integrals over the loop momenta using the defimition of eq (B 2),
(1v) take the limit n = 4 If the Feynman amplitude 1s finite, there will be no singu-
larity at n =4
As an example, let us consider the calculation of AQY, ansing from the first dia-
gram 1n fig 1 This electromagnetic vertex 1s given by

3 4% ror

Hiap = ¢ J(2n)n Vil W+ QW PPK - )X,
« gu)\ 1 )

(p—k)? [k + Q)7 - M [(k - Q)F — My

where
P_(h=g, —11 M,
Viea= k+tp+20),8, — 20kt Q) 8, — Q0 +Q -k) g,
Wogr = 2K,8,, — (k= 30),8,, — (k+30)8,, .
X,y = (7P = 20),85, = 2k~ Qe = (P =0 Ky,

We are only interested in that part of Muaﬁ which 1s proportional to p Q0. and
then only in the hmit 92 = Q

The term 1n l/Mév from the longitudinal parts of the W propagators does not con-
tribute, as 1t 1s proportional to Q2
The term 1n 1/M%v leads to the expression

k (k+Q) (k= Q) [2M3, +4p k- 4k?].

when all dummy 1ndices are summed over Similarly, one finds for the 878,y term
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(8n — 1)k (k + Q) (k ~ Q)+ 32p (K, 0, — k,0,) + 64K,0.0;
Since we only have to consider terms up to second power 1n (2, we can replace
i L, 40y

[k - Q)2 ~ M3][(k +0)* - M%] - 2 M2 k- M2t

Combining denominators with the Feynman trick, one finds for the over-all de-
nominator

=(k—p(1 —x)? - MEx2=12 - M2 x>

Making the shift, performing symmetric integration, and using eq (B 2) we have
1

p,0 QﬁJ dx {[Myx]" 8 x*(1 —x)(8n - 14)I(3 - in)

3
M
et (2\f yn
~ 5 [MyxI O x3(1 = x)(8n - 14)(1 — )2 — tm)I(1 — )

- MI—%V [2M3,(My, %) 6 x3(1 — x)T'(3 — Ln)
—IME (M%) O X1 - x)(1 ~im)2 —~ §m)T (1 —$n)

+2(My x)"* x2(1 — x)D(2 - §n)

—2(Myx)"*x2(1 -0 - imT(1 - in)l}
The I" functions which have poles for n = 4 can be shown to cancel, and the whole
expresston becomes finite forn = 4
1

M 1 (p Q Qﬂ/M )J dx {18x(1 —x) — 6x(1 —x)

Moy
0
3 pOQ
— (- x) -3 - D))} = A
1672 M},
from which follows
[43
AQY="3



WA Bardeen et al , Static quantities 331
REFERENCES

[1] S Wemnberg, Phys Rev Letters 19 (1967) 1264,
A similar model was discussed by A Salam in Elementary Particle Theory, Proceedings of
the Eighth Nobel Symposium, 1968, ed N Svartholm (Wiley, New York, 1968)
[2] PW Higgs, Phys Letters 12 (1964) 132, Phys Rev Letters 13 (1964) 508, Phys Rev 145
(1966) 1156,
F Englert and R Brout, Phys Rev Letters 13 (1964) 321,
G S Guralnik, C R Hagen and T W B Kibble, Phys Rev Letters 13 (1964) 585,
T W B Kibble, Phys Rev 155 (1967) 1554
[3] G ’t Hooft, Nucl Phys B35 (1971) 167
[4] BW Lee, Phys Rev, D5 (1972) 823
[§] S Wemberg, Phys Rev Letters 27 (1971) 1688
[6] TD Leeand CN Yang, Phys Rev 128 (1962) 885
[7] G 't Hooft and M Veltman, Nucl Phys B44 (1972) 189
[8] W A Bardeen, to be published
[9] TD Lee, Phys Rev 128 (1962) 899
[10] C Bouchiat, J Ilopoulos and Ph Meyer, Phys Letters 38B (1972) 519
[11] SJ Brodsky and J D Sullivan, Phys Rev 156 (1967) 1644
[12] I Bars and M. Yoshimura, Berkeley preprint (1972)
[13] BE Lautrup, A Peterman and £ de Rafael, Phys Reports 3 (1972) 193



