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Volume alteration in solid materials is a common cause of material failure. Here we investigate the crack
formation in thin elastic layers attached to a substrate. We show that small variations in the volume contraction
and substrate restraint can produce widely different crack patterns ranging from spirals to complex hierarchical
networks. The networks are formed when there is no prevailing gradient in material contraction, whereas
spirals are formed in the presence of a radial gradient in the contraction of a thin elastic layer.
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I. INTRODUCTION

Desiccation is known to produce complex networks of
shrinkage cracks in starch-water mixtures or clays �1–4�. In
concrete small cracks are often formed by the preparatory
drying process and by the later ingress of reactive reagents.
Similarly in nature, the infiltration of fluids and chemical
reagents into rocks generate internal stresses that form intri-
cate patterns of pervasive cracks �5�. Typically the stress is
generated from local volume changes. Fractures are also ob-
served in thin films attached to a substrate. Experiments on
films have revealed intricate patterns ranging from the hier-
archical structure typically observed in mud and concrete to
spiral-shaped cracks �1,6�. In spin coating a fluid droplet is
added at the center of a rotating substrate and spreads by
centrifugal forces to cover the full substrate. During the dry-
ing and curing of the system, chemical bonds are formed
between the coating and the substrate. In this process the
coating often shrinks and tensile stresses are produced �7�
and if one is less careful, the stress may result in an un-
wanted cracking of the coating. Due to the spinning of the
system, the residual stress of the coating may also contain
inherent shear components. Other mechanisms such as aniso-
tropic drying rates can also leave behind remnant shear. In
cases where the thickness of the drying specimen is small
and the contraction is fairly uniform, i.e., no residual shear
stresses, the growing cracks typically form an intricate hier-
archical pattern. The pattern is the result of a cascade of
successive cracks �which is supported by experimental evi-
dences �2��; at each fragmentation stage, a crack forms which
divides a mother fragment of area A into two daughter frag-
ments of areas A1 and A2 with area conservation �A=A1
+A2�. It is worth noticing that in principle the trajectory of
the crack that divides the mother fragment can be anything
and is determined from the shape and size of the mother
domain and the inherent material disorder.

In order to analyze the spiral and hierarchical cracks, we
consider a system consisting of a thin elastic layer attached
to an elastic substrate. Under plane stress conditions we have
that the in-plane strain tensor �ij in the layer is related to the
stress tensor �ij by

�xx = ��xx − ��yy�/E + � ,

�yy = ��yy − ��xx�/E + � ,

�xy = �1 + ���xy/E , �1�

where E is Young’s modulus and � �in the absence of exter-
nal stress� is a measure of the free volume change caused by,
e.g., drying or thermal expansion of the thin elastic layer.
Whenever the film is displaced from its equilibrium position
by a local displacement u the elastic substrate tries to restore
the film by a force f�u�. For small displacements we assume
that this force is linearly proportional to −u. In general it is
assumed that volume alteration in the film happens on a time
scale much larger than the time required for elastic waves to
propagate across the system and the system is therefore as-
sumed to always be in elastostatic equilibrium. The force
balance therefore assumes the form

� j�ij − �ui = 0, �2�

where � is the constant of proportionality of the substrate
restoring force. For small deformations the strain follows
from the displacement via the relations �ij = �� jui+�iuj� /2.
Combining this relation with the force balance �Eq. �2�� and
stress-strain relations �Eq. �1�� we achieve the following
equation for the displacement:

�u +
1 + �

1 − �
� �� · u� =

2�1 + ���
E

u . �3�

We now provide an estimate of the typical stress encoun-
tered during volume alteration of thin films with a linear
spatial extend of size R. To that end, we shall consider the
maximum stress for a circular domain of radius R located at
the center of coordinates and with vanishing stress at the
boundaries. The displacement field is for a uniform material
contraction � found as a solution to the radial symmetric
version of Eq. �3�,

�2ur

�r2 +
1

r

�ur

�r
− �a +

1

r2�ur = 0, �4�

where the material specific constant a is given by a= �1
−�2�� /E. Multiplying both sides of Eq. �4� by r2 and rescal-
ing r with �a yields the modified Bessel differential equa-
tion. The solution for �rr�R�=0 and ur�0�=0 is given by
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ur�r� =
�RI1��ar�

�aRI0��aR� − �1 − ��I1��aR�
, u� = 0. �5�

Here In, n=0,1, is the modified Bessel function of the first
kind. From the displacement field, the stress in cylindrical
coordinates follows from the expressions

�rr�r� =
E

1 − �2� �u

�r
+ �

u

r
− ��1 + ��� ,

����r� =
E

1 − �2�u

r
+ �

�u

�r
− ��1 + ��� . �6�

Note that by the symmetry of the problem the shear stress
vanishes. The breaking of this symmetry will be important
for the formation of the spiral crack patterns presented be-
low. The stress components have their maximum �absolute
value� at the middle of the circular domain and are given by

�rr�0� = ����0� =
�E

1 − �
� 1 + �

2I0��aR�
− 1� . �7�

The magnitude of the stress components monotonically in-
creases with R and in the limit R→� the stress components
achieve the value −E� / �1−��. In the limit R=0 the stress
becomes −E� /2. From Eq. �7� we can now provide an esti-
mate of a critical domain size that will fracture under a pre-
defined yield stress. As long as this yield stress is lower than
the material stress fracture will form and grow. Depending
on the material contraction the fractures may develop into
spiral-shaped patterns or hierarchical networks. In both cases
the maximum stress is reduced by the propagating crack and
only when the stress drops below the yield stress the fractur-
ing stops. In Fig. 1 we show a fracture network resulting
from numerical solutions as explained below, formed from
an initial contraction of the substrate and a predefined yield
stress level. According to Eq. �7� each domain division re-
duces the stress and an average linear size �R	 of the domains
can be found for a given yield stress by inverting Eq. �7�.

The nonuniformity of the elastic layer and the complex
boundary conditions make it hard and often impossible to
find an analytical solution to the displacement equation.
Therefore we have implemented a numerical method based
on the Galerkin finite element discretization using an adap-
tive triangular meshing. In the vicinity of a propagating
crack tip we highly increase the resolution by decreasing
locally the area of the triangular elements and thereby allow
for an accurate computation of the stress intensity factors of
the propagating crack. The drying process is simulated by
applying a body force to the elements, i.e., we shift the equi-
librium position by adding an extra force term on the right-
hand side of Eq. �2�. In that way we can readily add disorder
into the system by selecting the magnitude of the local body
force from a random distribution. In the simulations on hier-
archical fracture networks presented below, we use a uniform
distribution with unit mean �8–12�.

II. CRACK INITIATION AND PROPAGATION

Here we present in detail how we nucleate cracks and
model their evolution. First we find the points which have

the highest stress and exceed the critical value. The stress is
determined along the principal axes of the stress matrix �ij,
i.e., the principal stress. Whenever the yield stress is ex-
ceeded, we nucleate at the point of yielding a small elliptical
void with an eccentricity of 0.998. The major axis of the
ellipse is aligned in the direction of the maximum principal
stress. We allow the crack to evolve according to the Griffith
criterion and the principle of local symmetry, i.e., the crack
will grow in a direction such as to annul the local shear
component at the crack tip. At each step of propagation we
compute the stress in every element near the crack tip and
find the stress intensity factors from a best fit to the follow-
ing equations �13�:

��� =
KI

�2	r
cos3�

2
− 3

KII

�2	r
sin

�

2
cos2�

2
,

�r� =
KI

�2	r
sin

�

2
cos2�

2
+

KII

�2	r
cos

�

2
�1 − 3 sin2�

2
� . �8�

Here r ,� are local polar coordinates with respect to the crack
tip with � measured from the line following the direction of
the crack. ��� and �r� are the circumferential tensile stress
and the shear stress, respectively. KI and KII are the unknown
stress intensity factors for modes I and II, respectively. The
principle of local symmetry is satisfied if the crack grows in
a direction given by an angle 
 where KII→0. Suppose that
the crack forms an infinitesimal kink at an angle 
 from the
old direction of the crack, we can define the local mode I and
mode II stress intensity factors,

FIG. 1. �Color online� Four different stages in the evolution of a
hierarchical crack network. The total uniform contraction was 9%
and cracks were nucleated inside domains whenever the maximum
principal stress exceeded �c=0.85 in arbitrary units. The substrate
restraining force was drawn from a uniform distribution with 10%
disorder and a mean of unity.
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KI�
� = lim
r→0

���
�2	r = KI cos3


2
− 3KII sin




2
cos2


2
, �9�

KII�
� = lim
r→0

�r�
�2	r = KI sin




2
cos2


2

+ KII cos



2
�1 − 3 sin2


2
� . �10�

Whether the crack propagates or not is dictated by the Grif-
fith criterion, i.e., the energy balance of the energy release
rate into the crack tip region must balance the dissipation
involved in the crack propagation. For a kinked crack, the
energy release rate is

G�
� = �KI
2�
� + KII

2 �
��/E . �11�

Since

dKI

d

= −

3

2
KI cos2


2
sin




2
−

3

2
KII cos




2
�1 − 3 sin2


2
�

= −
3

2
KII, �12�

the maximum of the strain energy release rate dG�
� /d

=0 is equivalent to KII�
�=0 or dKI�
� /d
=0; thus the new
direction of the crack 
0 corresponds to the point where
KI�
0� exhibits a maximum and KII�
0�=0 �14�. Applying
the latter to Eq. �10� yields


0 = 2 arctan��KI − �KI
2 + 8KII

2 �/4KII� . �13�

We emphasize that in this model both the cracking time and
the area of the fragmented elements depend only on material
contraction and initial disorder. In a natural system this may
not always be the case since material properties and disorder
can evolve in time. Uniform contraction of the elastic layer
produces homogenous hierarchical crack patterns. One can in
this case argue that the effect of the crack is to partition the
mother area A �of generic shape� into two areas A1=�A and
A2= �1−��A, where 0���1 is a random variable whose
distribution �that must be symmetric under the transforma-
tion ��1−�� is unknown. In Fig. 2 the distribution of 
�
−1 /2
= 
A1−A2
 /2A, together with a best fit to an exponen-
tial distribution, is shown. Although the domain areas are
correlated with their mother domains, the exponential distri-
bution of � allows for a simple estimate of the area distribu-
tion by neglecting the correlation. That is, the areas at the nth
generation level can be determined by a product of n random
numbers drawn from the exponential distribution, i.e., Ai

�n�

=A0� j
n�ij. In Fig. 2, we show in the inset a distribution for

domain areas at the sixth generation together with the distri-
bution of the product of random numbers. After a few num-
ber of generations this distribution will approach a
logarithmic-normal distribution. The deviation from the ex-
ponential distribution for larger values of 
�−1 /2
 will, for
an increasing number of fracture generations, lead to a less
good fit using the exponential distribution as an approxima-
tion.

III. SPIRALS

We now investigate what happens when the contraction is
nonuniform and has smooth gradients. Experiments on thin
films attached to a substrate by a spin-coating technique re-
veal a broad range of crack patterns �6� ranging from net-
works of cracks to single cracks spiraling outward from their
site of nucleation. The nucleation is usually taking place at
localized sites with high stress typically generated from
small defects or inclusions in the material. If the material
contraction is uniform in the neighborhood around the crack,
the crack would propagate straight toward the material
boundary where it would curve to meet the boundary at a
right angle. However if the material contraction increases
smoothly away from the site of nucleation, straight cracks
would be unstable and would start to curve. In that way
circular-shaped cracks can be formed. During the preparation
of thin film coatings �such as spin coating� it is not uncom-
mon to have a minor residual shear stress. The shear stress
breaks the symmetry of the system and the circular crack
may then turn into a spiral. If we alter the contraction such
that it increases linearly away from a given site of crack
nucleation �e.g., follows a simple linear form ��r�=�r and
adds a small shear stress by rotating the elastic layer relative
to the underlying substrate with an angle �eq�r�=�0r
�, the
crack would propagate along a spiral trajectory. Different
powers of 
 result in the formation of different spirals. For
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FIG. 2. �Color online� The distribution density of 
�−1 /2
 for
simulations with 5%,10%, and 15% disorder on the substrate re-
straining. The distributions are averaged over domains formed at
the sixth generation of cracks �average of ten runs�. No significant
variation is seen at these fairly low levels of disorder. The black line
on top represents a best fit with an exponential distribution exp�
−
�−1 /2
 /
�, where 
=0.03. Inset: for the same data, the cumula-
tive distributions of the domain areas. The dashed line on top is an
estimate of the distributions considering the individual domain di-
visions to be uncorrelated �see text�.
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the simulation of the crack propagation we use an initially
circular symmetric system. A crack is then initiated at the
center of the circle and is allowed to propagate according to
the Griffith criterion until it reaches the boundary. The results
using a rotation of the substrate by a power 
=1 /2 are
shown in Fig. 3 using various values for the prefactors �0 and
�. The cracks, also in the experiments �6�, have a shape that
fit well a logarithmic spiral, i.e., they have a form r���
=A exp����, where � depends on the material contraction �
and the rotation �0. In Fig. 4 we show best fits of � as a
function of �0 for four values of �. Note that for small values
of �, when the spiral are tight, a fit to Archimedean spiral is
also possible with a similar degree of precision.

In summary, we pointed out the role of residual stresses in
determining the crack patterns in drying thin substrates. For
spiral patterns we related the properties of the spiral to the
degree of residual shear stress left in the layer. For hierarchi-
cal patterns we determined the position where new cracks
initiate as a function of the mother cell and offered a relation

of final mean size of cells to the critical value of the yield
stress.
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FIG. 3. Simulation of spiral cracks for various values of the
material contraction � and the rotation angles. In all the panels, the
crack was initiated at the center and was allowed to propagate until
it reached the outer boundary. Note that the smaller the shear stress
is, the more pronounced the spiraling is.
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FIG. 4. �Color online� The relation between � and the rotation
angle for four different values of the material contraction �. � is
computed as the exponent of a best fit to a logarithmic spiral,
r���=r0e��. The rotation angle is the prefactor �0 used in the ex-
pression for the relative rotation between the substrate and the thin
film. Fluctuations are due to numerical inaccuracies. The inset
shows a data collapse of �� for the same curves and is in agreement
with the simple scaling form ���0 /�. The errors in determining �
can be estimated from the fit to the logarithmic spiral and are of the
order of 2–4 %. Note the systematic bend in the lowest graph which
may be due to nonlinear effects.
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