
PROJECT IN CONTINUUM MECHANICS:
Simulating Fluid Flow in Complex Geometries using FEniCS

Gaute Linga* and Asger Bolet
Biocomplexity, Niels Bohr Institute, University of Copenhagen

*gaute.linga@nbi.ku.dk

Abstract

This document presents the project given in the course Continuum Mechanics, 2016, con-
cerning simulation of steady viscous flow in various 2D geometries. We briefly present some
background and instructions on the flow equations, the finite element method, and the FEniCS
framework, which shall be used to solve the flow equations. A guide on how to set up FEniCS
on your own computer is presented. Three exercises are given, with increasing difficulty: (1)
Laminar pipe flow, (2) force calculation from flow around objects, and (3) lid-driven cavity flow.

Introduction

Stokes flow
Incompressible flow is in general described by the Navier–Stokes equations,

∂u

∂t
+ (u ·∇)u− ν∇2u = f −∇p, (1a)

∇ · u = 0, (1b)

where u(x, t) is the velocity field, f(x, t) a body force, ν the kinematic viscosity, and p(x, t) the
pressure field.

In many settings the inertial forces are small compared to viscous forces, i.e. the Reynolds number
Re = |u|`/ν � 1, where ` is a characteristic length scale of the flow. In this case, eq. (1a) reduces
to the time-independent equation1

ν∇2u = ∇p− f . (2)

If we further neglect body forces and rescale p→ νp, we get the equation system

∇2u = ∇p, (3a)

∇2p = 0, (3b)

where eq. (3b) is found by taking the gradient of eq. (3a) and using the incompressibility condition
eq. (1b).

The system of eqs. (3a) and (3b), to be solved for x ∈ Ω where Ω is our domain, is the starting
point of the analysis you will be doing. For simplicity, we will assume prescribed velocity boundary
conditions,

u(x) = u0(x) for x ∈ ∂Ωu, (4)

and prescribed pressure boundary conditions (normal stress),

p(x) = p0(x) for x ∈ ∂Ωp, (5)

where ∂Ω = ∂Ωu ∪ ∂Ωp is the boundary of Ω.

Finite Element Method
The finite element method (FEM) is an efficient method for solving partial differential equations
(PDEs) in complex geometries. Basically, it consists in approximating the solution to a PDE
rather than approximating the equation itself (as would finite difference methods and finite volume
methods). This is obtained by employing calculus of variations. We will not present the FEM theory

1On very short time scales, however, the time-derivative term may be important.

1

in detail here, just a direct explanation of how our program will work. For a thorough introduction,
see e.g. [1, 5].

The quick and dirty recipe of FEM is the following: The domain is discretized by dividing it
into many subdomains, called elements. In our case, the elements are triangles. On each element,
we approximate the solution by linear combinations of basis functions defined on each element. The
element-wise equations defining the coefficients in these linear combinations are assembled for the
entire system, yielding a (large, and often sparse) set of algebraic equations to be solved.

In order to use FEM to solve our equations, we must formulate the problem in a weak (variational)
form. The basis functions belong to the function spaces V (velocity space) and P (pressure space)

By multiplying our equations (unknowns = trial functions (u, p)) by the test functions (v, q) and
successively integrating by parts, we may obtain the following (weak) problem formulation:

Weak formulation: Find (u, p) ∈W such that

a((u, p), (v, q)) = L((v, q)) for all (v, q) ∈W, (6a)

and u = u0 on ∂Ω, (6b)

where W = V × P is a mixed function space, and

a((u, p), (v, q)) =

∫
Ω

(∇u : ∇v − p∇ · v + q∇ · u) dV, (6c)

L((v, p)) = −
∫
∂Ωp

p0n · vdS. (6d)

This problem formulation is all we need. Now, to avoid most of the technicalities of FEM (actu-
ally constructing the basis functions, solving the integral equations on the element level, assembling
the system matrix, and enforcing the boundary conditions, . . .) and get straight to the physics, we
use the FEniCS framework.

FEniCS/DOLFIN
FEniCS is a collection of software for automated solution of PDEs using FEM [7]. The component
of FEniCS we will use to communicate with the FEniCS engine via Python is called DOLFIN [8].
Some of the functionality we will use is

• Making a simple mesh

• Setting up subspaces and basis functions

• Applying boundary conditions

• Solving the system

• Visualizing the solution

The bottom line is, all we need to do is to supply the variational form and boundary conditions and
the order of the elements (i.e. the polynomial degree of the basis functions)—FEniCS does the rest
(and it’s quite fast!).

Tip: If you want to get really dirty with FEniCS, you should consider following their excellent
tuturial [6].

Setting up FEniCS

In this section, you will learn how to set up FEniCS on your own computer.

Getting FEniCS
Go to http://fenicsproject.org/download/, choose your operative system, and follow the in-
structions thereunder. Make sure you get the latest stable version (1.6.0 at the time of writing this).
If you have the choice, I strongly recommend you to use Ubuntu.

2

http://fenicsproject.org/download/

Ubuntu: To get the latest version, make sure to add the FEniCS PPA before installing. Execute
the following in a terminal:

sudo add-apt-repository ppa:fenics-packages/fenics

sudo apt-get update

sudo apt-get install fenics

sudo apt-get dist-upgrade

Mac OS X or Windows:

• Alternative 1: (Advanced) For people who want to continue with scientific programming2, I
recommend you to switch to Ubuntu—e.g. make a dual boot or a Ubuntu Live USB. This
project is a unique possibility to start using it.

• Alternative 2: The recommended way (by the FEniCS team) of installing FEniCS on Mac and
Windows is to use their prebuilt Docker images. To do this; first install Docker (full version) for
your operating system. Instructions for installing Docker are found at https://docs.docker.
com/engine/getstarted/step_one/. The instructions for installing FEniCS in Docker are
found at http://fenics-containers.readthedocs.io/en/latest/introduction.html.

Additionally, we will need a working Python installation, with Numpy and Matplotlib. If you want
to visualize your results, I suggest installing ParaView. You can write your code in any text editor;
Emacs is a good candidate.

Minimal working example
To check if the installation was successful, open the terminal (Ctrl+Alt+T) and open Python in the
terminal:

python

and perform the commands

import dolfin as df

df.__version__

If the output says ’2016.2.0, you have probably succeeded.
If you want to further test your installation, you can run some of the scripts found at the FEniCS

home page, for example https://fenics.readthedocs.io/projects/dolfin/en/latest/demos.

html These should work out of the box.

How to structure your program
In general, I suggest that you break your program down in small units (functions) which you can
test individually. If the components themselves work, for any input, it is likely that the whole thing
will work.

The way the example program is structured in the following is not necessarily good coding
conduct; it is structured this way for pedagogical purposes.

In the following, you will be asked to run simulations for different input parameters. If you are an
advanced Python programmer, you may want to make automated scripts, and systematically store
the input and output values to a data file. However, this is not necessary—you can also copy/paste
the output to your data analysis software of choice.

When you are asked to analyze or plot the output of FEniCS simulations, use the software
you are most familiar and comfortable with: Matlab, Python with Matplotlib (be sure to make a
separate script), Gnuplot, R, or Excel. I won’t judge you.

2In this context, astrophysics, astrology and astronomy is not regarded as ‘scientific’.

3

https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/
http://fenics-containers.readthedocs.io/en/latest/introduction.html
https://fenics.readthedocs.io/projects/dolfin/en/latest/demos.html
https://fenics.readthedocs.io/projects/dolfin/en/latest/demos.html

Exercises

It is time to get to the exercises. We will restrict our scope to flow in two dimensions.

Pipe flow

p

pleft pright

uwall = 0

Figure 1: Pipe flow setup.

The first case concerns simulation of pipe flow. In this case we will go step-by-step through an
example program. Use your favourite text editor to make a file named, e.g., pipeflow.py. You are
encouraged to run your program several times as we go along. To do this, use the command:

python pipeflow.py

We shall consider a pipe of diameter d = 4 and length l = 10, as shown in fig. 1. On the left
side, we prescribe the pressure p(0, y) = 1 and on the right p(l, y) = 0. Along the pipe walls we use
the no-slip condition u(x, 0) = u(x,D) = 0.

Load DOLFIN: First, we need to load all the capabilities of FEniCS using the Python module
DOLFIN, and the numerical tools package Numpy. This can be done using

from dolfin import *

import numpy as np

where we have for convenience adopted the entire dolfin namespace.

Domain and mesh: We now have to define and discretize our domain. To create the domain, we
can use the function RectangleMesh(p0, p1, nx, ny, diagonal="right") which draws a nx×ny
rectangle between the points p0 and p1.

This can e.g. be done as

Define domain and discretization

delta = 0.5

length = 10.0

diameter = 4.0

Create mesh

p0 = Point(np.array([0.0, 0.0]))

p1 = Point(np.array([length, diameter]))

nx = int(length/delta)

ny = int(diameter/delta)

mesh = RectangleMesh(p0, p1, nx, ny)

You can interactively visualize the mesh using

plot(mesh, title="Mesh")

interactive()

4

Mark the boundary: In order to apply boundary conditions, we must mark the different parts of
the boundary correctly. We may first define some labels,

Making a mark dictionary

Note: the values should be UNIQUE identifiers.

mark = {"generic": 0,

"wall": 1,

"left": 2,

"right": 3 }

Now we define a function marking the subdomains of the mesh. We first mark the entire domain as
“generic”.

subdomains = MeshFunction("size_t", mesh, 1)

subdomains.set_all(mark["generic"])

The subdomain function should be marked with the correct labels on the correct parts of the mesh.
Now, we define the Left part of the boundary, which inherits the SubDomain class:

class Left(SubDomain):

def inside(self, x, on_boundary):

return on_boundary and near(x[0], 0)

Here, on_boundary is a flag indicating if a node is on the boundary, and near(a, b) is a function
returning true if a and b are approximately equal (difference below some threshold). Note that x[0]
refers to the first coordinate of x.

♠ Write the classes Right and Wall for the remaining boundaries.

Now we apply the mark defined previously for the boundaries:

left = Left()

left.mark(subdomains, mark["left"])

Now the left boundary has been marked.

♠ Mark the boundaries right and wall as well.

Finally, you can visualize the subdomains mesh function using the command

plot(subdomains, title="Subdomains")

interactive()

♠ Do the boundaries have the correct value according to the mark labels defined above?

Define function spaces: We now move away from the boundary for a little while. We define our
function spaces, effectively the set of basis functions on our elements. To avoid stability issues which
can be a problem for mixed spaces (look up the Babuska–Brezzi condition), we use Taylor–Hood
elements to resolve the problem. This means that we use second-order continuous-Galerkin (CG)
basis functions for the velocity and first-order CG for the pressure.

This can be implemented as follows, by first defining the elements and constructing a function
space from this:

Define function spaces

V = VectorElement("CG", triangle, 2)

P = FiniteElement("CG", triangle, 1)

W = FunctionSpace(mesh, V*P)

Here, W is the mixed space.

5

Define variational problem: We now define trial and test functions living in the space W:

Define variational problem

(u, p) = TrialFunctions(W)

(v, q) = TestFunctions(W)

We also define measures for our integration (matrix assembly). We supply subdomains to divide
the domain according to which mark it has (see below).

dx = Measure("dx", domain=mesh, subdomain_data=subdomains) # Volume integration

ds = Measure("ds", domain=mesh, subdomain_data=subdomains) # Surface integration

To assemble the surface integral in the variational form, we need the surface normal, the inlet/outlet
pressures, and a (dummy) body force:

Surface normal

n = FacetNormal(mesh)

Pressures. First define the numbers (for later use):

p_left = 1.0

p_right = 0.0

...and then the DOLFIN constants:

pressure_left = Constant(p_left)

pressure_right = Constant(p_right)

Body force:

force = Constant((0.0, 0.0))

Finally, we are ready to feed DOLFIN the variational form, cf. eqs. (6a) to (6d):

a = inner(grad(u), grad(v))*dx - p*div(v)*dx + q*div(u)*dx

L = inner(force, v) * dx \

- pressure_left * inner(n, v) * ds(mark["left"]) \

- pressure_right * inner(n, v) * ds(mark["right"])

Apply (Dirichlet) boundary conditions: We now return to the boundary. The no-slip (zero ve-
locity) boundary condition can be defined as:

noslip = Constant((0.0, 0.0))

bc_wall = DirichletBC(W.sub(0), noslip, subdomains, mark["wall"])

Here, W.sub(0) refers to the first subspace of W, namely V. Similarly, W.sub(1) refers to P.

♠ Implement also the pressure boundary conditions bc_left and bc_right, using, respectively,
pressure_left and pressure_right. Remember that this must be applied to the pressure
subspace using W.sub(1).

Finally, we collect the boundary conditions into one vector:

bcs = [bc_wall, bc_left, bc_right]

Solve variational problem: The problem is now fully specified, and all that remains is to solve
it. We define the temporary solution vector w (corresponding to the mixed space W), and solve the
variational problem with the supplied Dirichlet BCs bcs using the function solve(problem, w,

bcs). If problem is of the form a == L, as below, DOLFIN automatically deduces that it is a linear
problem.

Compute solution

w = Function(W)

solve(a == L, w, bcs)

6

Finally, we split the solution vector w into its velocity and pressure parts:

Split using deep copy

(u, p) = w.split(True)

This should give you the solution for velocity and pressure, respectively through u and p.

Visualize the solution: The straightforward plotting tool is easy to use:

Plot solution

plot(u, title="Velocity")

plot(p, title="Pressure")

interactive()

You might want to visualize the speed |u|. It is therefore useful to implement the function magnitude:

Magnitude function

def magnitude(vec):

return sqrt(vec**2)

Then you can plot the speed by:

plot(magnitude(u), "Speed")

Tip: For more sophisticated interactive plotting, you can use ParaView[4]. Export the solution
using the following commands:

Save solution in VTK format

ufile = File("velocity.pvd")

ufile << u

pfile = File("pressure.pvd")

pfile << p

Now you can open the .pvd-files using ParaView.

Assess the solution: You are now asked to inspect the solution.

♠ How does the solution for the velocity field u look? What about the pressure p?

♠ Vary and interchange the values of p_left and p_right. How does the solution change?

♠ How does the numerical solution, for u and p, compare to the analytical solution?

One way of doing this quantitatively is the following: Construct first the analytical solution in the
domain. This is done by constructing an Expression (which evaluates C code in the domain;
therefore we have to pass variables in a special way—see code below), and interpolating it onto the
V subspace. For both p and u:

Define coefficient

coeff = (p_left-p_right)/(2*length)

Define expressions

u_analytic = Expression(("C*x[1]*(2.0*rad - x[1])", "0.0"),

C=coeff, rad=0.5*diameter, degree=2)

p_analytic = Expression("p_l - 2*C*x[0]", p_l=p_left, C=coeff,

degree=1)

Project onto domains

u_analytic = interpolate(u_analytic, W.sub(0).collapse())

p_analytic = interpolate(p_analytic, W.sub(1).collapse())

Subtract the analytical solution from the original one and take the magnitude:

7

u_error_local = magnitude(u - u_analytic)

Integrate (assemble) over the whole domain to get the global error:

u_error = assemble(u_error_local*dx)

print "u_error =", u_error

♠ How do the errors in u and p change as you refine the grid (i.e. change delta)?

Normally, we would expect that the error decreases with refined grid according to the order of the
elements.

♠ Why may this not happen here? Hint: Look at the polynomial order of the function spaces
V and P and of the analytical solution for u and p.

The divergence of the velocity field is found by

div_u = div(u)

div_u = project(div_u, W.sub(1).collapse()) # Project on the pressure subspace since it is scalar order 1 (V is 2)

and it should, of course, be zero for infinite numerical precision.

♠ How does the error in ∇ · u change as you refine the grid?

Flow around objects
In this exercise, you will learn to calculate the drag force Fdrag and lift force Flift on arbitrarily
shaped objects in an otherwise uniform creeping flow, as sketched in fig. 2.

uouter= const.

uinner = 0

θ0

Figure 2: Setup for flow around objects.

We will use a constant velocity condition on the outer boundary,

u(x) = U0 cos θ0êx + U0 sin θ0êy, (7)

where θ0 is a fixed angle. The final aim of this exercise is to calculate Fdrag and Flift as a function
of rotation angle θ0, and thereby, among other things, find the most “aerodynamic” angle in low
Reynolds number flow.

♠ You can now open your favourite text editor and create a file named, e.g., flowaround.py.

It is a good idea to base the program on what you learned from the previous exercise, and reuse
some functions where possible. For example, the function spaces, test functions and trial functions
will be the same as before. In the variational problem, the only change is that L becomes

L = inner(force, v) * dx

since we no longer have pressure boundary conditions.

8

Meshes: In this case, we will supply you with meshes (or you can make your own, if you prefer
and are able to).

The following meshes are provided: An obstacle-free mesh (free_2d.xml.gz), a mesh with circu-
lar obstacle (circle_2d.xml.gz), and a mesh with a NACA airfoil [2] as obstacle (naca_2d.xml.gz).
You can load a pre-generated mesh by the following command:

mesh = Mesh("free_2d.xml.gz")

Mark the boundary: In this case, we have two boundaries: outer and inner boundary.

♠ Mark the boundary in a similar manner as in the previous exercise, but now with the boundary
mark labels "inner_boun" and "outer_boun".

Hint: The command

rad2 = x[0]**2 + x[1]**2

gives the squared distance from the center, and the flag on_boundary yields (as before) True if a
point is on the boundary or False if not. The meshes we provide you with are centered at the origo.
Note: You should not use the name inner on a variable, as this name is reserved for the inner
product function in DOLFIN.

♠ Visualize the subdomains function to ensure that the boundary is correctly marked.

Apply (Dirichlet) boundary conditions: Similarly as in the previous exercise, we will apply Dirich-
let boundary conditions on the velocity field. For prescribed, constant boundary velocity, this can
be achieved by the commands:

u_outer_boun = Constant((U_0*cos(theta), U_0*sin(theta)))

bc_outer_boun = DirichletBC(W.sub(0), u_outer_boun, subdomains, mark["outer_boun"])

♠ Implement and apply the (no-slip) inner boundary condition as well.

To have a well-posed problem you need to fix the pressure at one node to some reference value.
Take e.g. the node to the left:

bc_p = DirichletBC(W.sub(1), 0, "x[0] < -1.0 + DOLFIN_EPS", "pointwise")

Analyse the solution: You now have all the information needed to calculate the flow in any of
these domains.

First, to verify that the solver is working correctly, you can run a simulation using the mesh
free_2d.xml.gz, where the domain is free of obstacles.

♠ Does the solution match the (trivial) analytical solution?

Now, we switch to more complex geometries. The following tasks should be done for the mesh
circle_2d.xml.gz (flow around a circle) and naca_2d.xml.gz (NACA airfoil).

♠ Visualize the solution for an angle of choice θ0. Where is the pressure and velocity highest
and lowest? Why?

The second deviatoric stress invariant, J2, which measures how sheared the liquid is, is given by

J2 =
1

2
tr(σ2

visc). (8)

Calculation of the viscous stress tensor, total stress tensor and J2 can be implemented as follows:

9

Viscous stress

sym returns the symmetric part of a matrix

stress_visc = 2*sym(grad(u))

Total stress

stress = -p*Identity(2) + stress_visc

Second deviatoric (viscous) stress invariant

J_2 = 0.5*tr(stress_visc*stress_visc)

♠ Calculate the viscous and total stress in the fluid, and visualize J2.

Tip: If you want to visualize it in ParaView, you can export the tensor field σ by the following
commands:

T = TensorFunctionSpace(mesh, "CG", 1) # Order 1, as it is a deriv. of V (order 2)

stress = project(stress, T)

stress_file = File("stress.pvd")

stress_file << stress

We will now calculate the traction on the inner boundary, and decompose it into a drag force and
a lift force by using the direction of the imposed flow, n_flow. A way to do this is the following,
assuming you have already calculated the boundary normal n and the surface measure ds (see
previous exercise if you haven’t):

Imposed flow direction:

n_flow = Constant((cos(theta), sin(theta)))

n_flow = project(n_flow, W.sub(0).collapse())

Perpendicular to n_flow:

t_flow = Constant((sin(theta), -cos(theta)))

t_flow = project(t_flow, W.sub(0).collapse())

Compute traction vector

traction = dot(stress, n)

Integrate decomposed traction to get total F_drag and F_lift

F_drag = assemble(dot(traction, n_flow) * ds(mark["inner"]))

F_lift = assemble(dot(traction, t_flow) * ds(mark["inner"]))

Now you should be able to calculate the lift force Flift and drag force Fdrag for any imposed flow
angle θ0.

♠ Systematically vary the imposed flow angle θ0 ∈ [0, 2π] and plot Flift and Fdrag as functions
of θ0. Locate the extremal points.

♠ Do you recognize the symmetry of the geometry (and the equations) in the plotted graphs?

Extra task for the most ambitious: As you might be aware of, “unbounded” Stokes flow can not
occur in 2D (see Stokes’ paradox, e.g. [3]). This makes our numerical experiments only applicable
to confined flows, and our calculated drag coefficients would not converge to a finite value as we
increased the domain and kept the obstacle size fixed. To add some realism, you are therefore invited
to include the inertia term in your calculations. The necessary information for doing so is given in
the next exercise.

♠ Plot the drag force Fdrag as a function of Re for different angles. How does it change with
increasing Re? It has been proposed that Fdrag ∼ Re−1 for small Re. Can you see this from
your simulations?

10

Lid-driven cavity
You are quickly becoming an expert in FEniCS. We shall now consider one of the classic test cases
in computational fluid dynamcs (CFD), namely that of lid-driven cavity flow. We consider a square
geometry (cavity) with side length l = 1. The left, right and bottom boundaries have no-slip
conditions and the top (lid) is driven with a velocity U0 = 1 in the x direction. This results in a
circulation in the cavity. The setup is sketched in fig. 3.

ulid = u0ex

uwall = 0

Figure 3: Setup for lid-driven cavity flow.

♠ Open your favourite text editor and create a file named, e.g., cavity.py.

♠ Create a mesh for the cavity, in the area [0, l] × [0, l]. You can start with discretization
resolution N = 32 (=nx=ny) points along each axis.

♠ Create the classes Wall and Lid to mark the boundary of the cavity.

In this case, we shall explore the effect of including the advection term in the solver, i.e. investigate
Re > 0. We will still restrict our scope to seeking steady-state solutions. The equations describing
the problem are then, disregarding the body force,

ν∇2u− (u ·∇)u = ∇p, (9a)

∇ · u = 0 (9b)

so that the weak form of the problem becomes: Find (u, p) ∈W such that∫
Ω

(ν∇u : ∇v + (u ·∇u) · v − p∇ · v + q∇ · u) dV = 0 for all (v, q) ∈W. (10)

The non-linear functional F describing the problem can be impemented as

F = inner(grad(u)*u, v)*dx \

+ nu*inner(grad(u), grad(v))*dx \

- p*div(v)*dx \

- q*div(u)*dx

Here, some variables (w, u, p, nu) have to be defined beforehand, by

Reynolds = 1.0 # or any other value

nu = 1./Reynolds

Solution vectors

w = Function(W)

u, p = (as_vector((w[0], w[1])), w[2])

The inertia term is non-linear, so a standard linear solver will not do in solving this problem. To
optimally use a non-linear solver, we supply the Jacobian with respect to the (mixed) field w that
we are solving for. This is implemented as the following:

J = derivative(F, w) # Jacobian

Then the non-linear solver can be invoked:

11

solve(F == 0, w, bcs, J=J)

Here, the solve() function automatically recognizes the form F == 0 as a non-linear problem.
Newton’s method is the default non-linear solver, and works well for relatively small meshes. You
can set the reference pressure BC at the bottom-left-most node by

bc_p = DirichletBC(W.sub(1), 0, "x[0] < DOLFIN_EPS && x[1] < DOLFIN_EPS", "pointwise")

Remember that you have to include bc_p in the bcs vector.

♠ Implement the above, along with the described boundary conditions, to solve the steady-state
Navier–Stokes equations for lid-driven cavity flow. Visualize the resulting fields.

The most straightforward way to get the streamlines of the flow field we can place “particles”
at random in the domain and passively advect them, i.e. integrate up their velocity. The script
trace.py we provide you with does this. First, you have to export the mesh and velocity field to
.xml.gz format.

u_file = File("u_Re" + str(Reynolds) + "_N" + str(N) + ".xml.gz")

mesh_file = File("mesh.xml.gz")

u_file << u

mesh_file << mesh

Then you can open a new terminal and run the script by:

python trace.py mesh.xml.gz u_Re10_N100.xml.gz trace_Re10_N100.dat -ds 0.005 -S 5 -n 100

This will create a data file trace_Re10_N100.dat with the trajectories of 100 tracers, where the
integration step length is 0.005 and total path length is 5. The latter file is structured as blocks
(one block per tracer) of space-separated data in the following order: tracer ID, time t, x, y, ux, uy,
i.e. you need to plot column 3 and 4. In Gnuplot, this is straightforward:

pl ’cavity_data/trace_Re10_N100.dat’ u 3:4 w l

♠ Plot streamlines of the flow for some values of Re < 1000 (changing Re amounts to changing
the viscosity ν). How does the flow change?

Tip: You may have to increase the grid resolution N to achieve convergence.

References

[1] Wikipedia: Finite element method. https://en.wikipedia.org/wiki/Finite_element_

method, 2016. Online; accessed 13 March 2016.

[2] Wikipedia: NACA airfoil. https://en.wikipedia.org/wiki/NACA_airfoil, 2016. Online;
accessed 13 March 2016.

[3] Wikipedia: Stokes’ paradox. https://en.wikipedia.org/wiki/Stokes%27_paradox, 2016.
Online; accessed 13 March 2016.

[4] Utkarsh Ayachit. The ParaView guide: A parallel visualization application. Kitware, Inc., 2015.

[5] Young W. Kwon and Hyochoong Bang. The finite element method using MATLAB. CRC press,
2000.

[6] Hans Petter Langtangen and Anders Logg. Solving PDEs in Minutes - The FEniCS Tutorial Vol-
ume I. https://fenicsproject.org/pub/tutorial/html/ftut1.html, 2016. Online; accessed
13 March 2016.

12

https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/NACA_airfoil
https://en.wikipedia.org/wiki/Stokes%27_paradox
https://fenicsproject.org/pub/tutorial/html/ftut1.html

[7] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations
by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media,
2012.

[8] Anders Logg, Garth N Wells, and Johan Hake. DOLFIN: A C++/Python finite element library.
In Automated Solution of Differential Equations by the Finite Element Method, pages 173–225.
Springer, 2012.

13

	Introduction
	Stokes flow
	Finite Element Method
	FEniCS/DOLFIN

	Setting up FEniCS
	Getting FEniCS
	Minimal working example
	How to structure your program

	Exercises
	Pipe flow
	Flow around objects
	Lid-driven cavity

