
Continuum mechanics Week 10

Exercises Week 10

Exercises from the book

12.6, 13.5, 13.9, 13.10, 20.1

Optional or if time permits: Potential flow around a corner
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The real and imaginary parts of a holomorphic (analytic) function in the complex plane,
f = ψ + iφ, are always harmonic, that is they satisfy the Laplace equation

∇2ψ = 0 and ∇2φ = 0.

In terms of complex variables, we can write the in-plane Laplace equation on the form

0 = ∇2ψ =
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)(
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ψ = 4

∂2ψ

∂z̄∂z
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where z = x+ iy.

In a potential flow, the velocity of the fluid is given by the gradient of a harmonic
function (potential) ψ, that is

v =

(
∂xψ
∂yψ

)
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In complex variables the complex velocity v is given by the derivative of the function f

v = 2
∂ψ

∂z̄
=
∂ψ

∂x
+ i

∂ψ

∂y

We shall now use the potential for a uniform flow with velocity k in the x-direction

ψ = kRe[z] (1)

to find the flow around a corner.

• First you will have to find the conformal mapping from the domain consisting of
the points r exp(iθ) with r > 0 and 0 ≤ θ ≤ 3π/2 shown in the figure to the upper
half-plane. Try with mappings on the form Φ(w) = wα.

• Use the conformal mapping together with Eq. (1) in order to find an expression
for the flow potential and the fluid velocity around the corner. Use the fact that
ψ (Φ(w)) is harmonic.

• Calculate the pressure along the line segment r exp(i3π/4) where r > 0 (the dashed
line in the figure).
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