Continuum mechanics Week 10

Exercises Week 10

Exercises from the book

12.6, 13.5, 13.9, 13.10, 20.1

Optional or if time permits: Potential flow around a corner
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The real and imaginary parts of a holomorphic (analytic) function in the complex plane,
f =1 +1i¢, are always harmonic, that is they satisfy the Laplace equation
V% =0 and VZ%¢=0.

In terms of complex variables, we can write the in-plane Laplace equation on the form
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where z = z + 1y.

In a potential flow, the velocity of the fluid is given by the gradient of a harmonic

function (potential) ¢, that is
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Continuum mechanics Week 10

In complex variables the complex velocity v is given by the derivative of the function f
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We shall now use the potential for a uniform flow with velocity % in the x-direction
1 = kRelz] (1)

to find the flow around a corner.

e First you will have to find the conformal mapping from the domain consisting of
the points r exp(if) with r > 0 and 0 < 6 < 37/2 shown in the figure to the upper
half-plane. Try with mappings on the form ®(w) = w®.

e Use the conformal mapping together with Eq. (1) in order to find an expression
for the flow potential and the fluid velocity around the corner. Use the fact that
Y (P(w)) is harmonic.

e Calculate the pressure along the line segment r exp(i37/4) where r > 0 (the dashed
line in the figure).



