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SOLUTION BY SEPARATION OF VARIABLES OF THE SPHERICAL

LAPLACE EQUATION

The Laplace equation is a second order partial differential equation in a scalar field u.

We often write the Laplace equation as the divergence of the gradient of u, i.e.

∇ · ∇u = 0 (1)

or simply as

∇2u = 0 (2)

A basic equation in physics, which involves the Laplace operator, is the Helmholtz equation

∇2u+ κ2u = 0 (3)

In a three dimensional Cartesian coordinate system, the Helmholtz equation has the

following form

∂2u(x, y, z)

∂x2
+
∂2u(x, y, z)

∂y2
+
∂2u(x, y, z)

∂z2
+ κ2u(x, y, z) = 0, (4)

whereas in spherical coordinates, with

x = r sin θ cosϕ (5)

y = r sin θ sinϕ (6)

z = r cosϕ, (7)

the Helmholtz equation of u(r, θ, ϕ) can be written on the form

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+

1

r2sin2θ

∂2u

∂ϕ2
+ κ2u = 0 (8)

We consider solutions to the Helmholtz equation where the scalar field is written as a

product of three functions in the variables r,θ and ϕ, i.e.

u(r, θ, ϕ) = R(r)Y (θ)P (ϕ) (9)

A solution on this form is called a solution by separation of variables and an equation for

which such a solution exists is sometimes called separable. While we can always try and see

if such a solution exist, most equations will in general not have separable solutions or even

if they had, the solutions cannot be guaranteed to match the boundary conditions.
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If we insert Eq. (9) in Eq. (8), we get

0 = R′′Y P +
2

r
R′Y P +

1

r2
RY ′′P +

cot θ

r2
RY ′P +

1

r2 sin2 θ
RY P ′′ + κ2RY P, (10)

where R′ = ∂rR, Y ′ = ∂θY and P ′ = ∂ϕP . If we multiply by r2 on both sides and divide

through by RY P , we get

0 =
r2R′′ + 2rR′ + κ2r2R

R
+
Y ′′ + cot θY ′

Y
+

1

sin2 θ

P ′′

P
(11)

or similarly, we have

r2R′′ + 2rR′ + κ2r2R

R
= −Y

′′ + cot θY ′

Y
− 1

sin2 θ

P ′′

P
, (12)

where the left-hand side only depends on the variable r and the right-hand side only depends

on the angular variables. This is only possible if both the left and right-hand sides are equal

to a constant.

The Legendre Differential Equation

Let us for a moment consider the case where the solution does not depend on the variable

ϕ, i.e. we consider a problem that is rotation-symmetric around the z-axis. In this case we

end up with an equation

−Y
′′ + cot θY ′

Y
= k (13)

or

Y ′′ + cot θY ′ + kY = 0 (14)

The cot θ is rather disturbing and we would therefore prefer if the equation could be expressed

in a different form. A simple change of variable x = cos θ does the trick. We then get that

Y ′(θ) =
∂Y

∂θ
=
∂Y

∂x

∂x

∂θ
= − sin θ

∂Y

∂x
(15)

and

Y ′′(θ) =
∂Y ′

∂θ
= − cos θ

∂Y

∂x
+ sin2 θ

∂2Y

∂x2
= −x∂Y

∂x
+ (1− x2)∂

2Y

∂x2
(16)

By setting k = `(` + 1) and by using the new variable x, Eq. (14) becomes Legendre’s

differential equation

(1− x2)∂
2Y

∂x2
− 2x

∂Y

∂x
+ `(`+ 1)Y = 0 (17)
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The Associated Legendre Differential Equation

We now consider solutions that depends on the azimuthal angle ϕ. If we assume that the

function P (ϕ) can be decomposed in Fourier modes eimϕ, we achieve from Eq. (12),

`(`+ 1) = −Y
′′ + cot θY ′

Y
+

m2

sin2 θ
. (18)

Going through the same substitution calculation as above, we end up with the associated

Legendre differential equation

(1− x2)∂
2Y

∂x2
− 2x

∂Y

∂x
+

[
`(`+ 1)− m2

1− x2

]
Y = 0 (19)

The Bessel Equation

With the separation constant `(`+ 1), the radial part of Eq. (12) turns into the equation

r2R′′ + 2rR′ +
[
κ2r2 − `(`+ 1)

]
R = 0. (20)

The Bessel equation typically follows from cylindrical coordinates and not spherical coordi-

nates as we have considered here. However, we bring Eq. (20) to same form as follows from

consideration in cylindrical coordinates by performing the substitution,

R(r) = r−
1
2y(r) (21)

where

R′ = −1

2
r−

3
2y + r−

1
2y′ and R′′ = r−

1
2y′′ − r−

3
2y′ +

3

4
r−

5
2y (22)

By inserting these expressions in Eq. (20) and multiplying with
√
r, we end with the Bessel

equation

r2y′′ + ry′ +

[
κ2r2 −

(
`+

1

2

)2
]
y = 0 (23)

We then perform the final substitutions x = κr and ν = `+ 1/2, and achieve

x2y′′ + xy′ +
[
x2 − ν2

]
y = 0 (24)


