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Characterization of phase transitions in a model ecosystem of sessile species
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We consider a model ecosystem of sessile species competing for space. In particular, we consider the system
introduced by Mathiesen et al. [J. Mathiesen, N. Mitarai, K. Sneppen, and A. Trusina, Phys. Rev. Lett. 107,
188101 (2011)] where species compete according to a fixed interaction network with links determined by a
Bernoulli process. In the limit of a small introduction rate of new species, the model exhibits a discontinuous
transition from a high-diversity state to a low-diversity state as the interaction probability between species, γ , is
increased from zero. Here we explore the effects of finite introduction rates and system size on the phase transition
by utilizing efficient parallel computing. We find that the low state appears for γ > γc. As γ is increased further,
the high state approaches the low state, suggesting the possibility that the two states merge at a high γ . We find
that the fraction of time spent in the high state becomes longer with higher introduction rates, but the availability
of the two states is rather insensitive to the value of the introduction rate. Furthermore, we establish a relation
between the introduction rate and the system size, which preserves the probability for the system to remain in
the high-diversity state.
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I. INTRODUCTION

Many ecosystems maintain a high diversity in spite of the
competition among species, and mechanisms of coexistence
remain a central question in ecology. In particular, the seminal
works by Gardner and Ashby [1] and May [2] that pointed out
in a simple toy model that a well-mixed system with random
interaction inhibits stable coexistence made researchers
explore various explanations for the development of stable
ecosystems [3–6]. For example, a nonhierarchical interaction
or cyclic relationship among species has been proposed as
a way to obtain long-lasting coexistence [7–11], though it
often causes oscillatory dynamics of the population. When
space is explicitly considered, the oscillation of the total
population can be suppressed and instead gives rise to a spiral
wavelike dynamics, which further stabilizes the coexistence
of species [12–27].

In [28] a simple spatial ecosystem model was introduced
for mutually exclusive and sessile species that compete for
available space. The model was inspired by the coexistence of
lichen species [29–32] and corals [14,15,33,34]. The model
introduced a competitive interaction between occupants of
neighboring sites on a two-dimensional square lattice. A
species can replace the occupant of a neighboring site if
a predefined interaction network contains a link from that
species to the species in the neighboring site. In the model, the
interactions among species are assigned randomly, according
to a Bernoulli process. When the connectivity of the interaction
network increases, a transition from multiple coexisting
species to one species is observed [28]. For this model it
was shown that the presence of cyclic interactions among
species is necessary to maintain a high-diversity state [35]. In
particular, cyclic interactions lead to a complex spatiotemporal
dynamics that creates spatial patches, which provide niches for
a newly introduced species. In the limit of small introduction
rates, the transition between the high- and low-diversity states
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was found to be sharp and discontinuous. For small, but
finite, introduction rates the model shows a bistable dynamics,
switching between low- and high-diversity states above the
critical connectivity [35]. This behavior is found to be robust
to changes in the lattice structure [28], the introduction of a
very small death rate [36], and to making the introduced new
species mutations of existing ones [37]. For larger introduction
rates, the diversity tends to be higher and the bistability is
smeared out by inherent noise in the dynamics.

This is one of the simplest models of spatial coexistence of
competitive species. The interaction network is completely
random, and the model is characterized by the only two
parameters, i.e., the connectivity of the interaction network
and the introduction rate of new species. Understanding the
properties of the transition between low- and high-diversity
states will improve our basic understanding of the coexistence
mechanism. However, previously, the characteristics of the
transition were not carefully analyzed. In particular, it was
unclear whether separate high- and low-diversity states exist
for large introduction rates, or if they merge at a critical point.

Here we examine the effect of the species introduction rate
on the transition between low and high diversity. We first
demonstrate that increasing the introduction rate gradually
reduces the time spent in the low-diversity state, while
the bistable dynamics is maintained. However, independent
of the introduction rate, the model maintains a qualitative
transition at a critical probability of interactions, below
which the low-diversity state is inaccessible. The distinction
between the high- and low-diversity states tends to be smaller
with higher interaction probability, again independent of the
introduction rate. Thus, the introduction rate and frequency
of interaction play orthogonal roles in how they affect the
qualitative dynamics. The accessibility of the low-diversity
state is determined by the frequency of interaction, while
the introduction rate controls the time spent in the respective
state if the low-diversity state is accessible. Finally, we show
that, scaling the introduction rate inversely proportional to the
lattice length, the fraction of time spent in high and low states
is conserved for different system sizes.
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The paper is structured as follows: In Sec. II, we briefly
describe the model [28,35] and the algorithm for parallel
computing. We also give precise definitions of the terms
introduction rate and interaction frequency. Section III A
introduces the frozen boundary length as a more robust
classification criterion for low and high states, compared
to the diversity. In Secs. III B and III C, we examine how
the interaction frequency, introduction rate, and system size
influence the availability and prevalence of the low state.
Finally, we observe a continuous behavior at the phase
transition for finite introduction rates.

II. MODEL

In this simple ecosystem model, multiple species compete
for occupation of space on a two-dimensional square lattice.
A lattice site can only be occupied by one species at a time.
The interactions in the ecosystem are defined by a directed
network of competitive interactions between species. A species
can invade a neighboring site and replace its occupant if the
interaction network contains a link from the invading species to
the occupying species. The interaction network is described by
�(si,so) ∈ {0,1}, where si and so represent the invading species
and occupying species, respectively. �(si,so) = 1 describes
a link from species si to so, which means si can replace
so on a neighboring lattice site. Each element of the matrix
� is predetermined to be 1 with probability γ , or zero
with probability 1 − γ . In this model, there are two ways
for species si and sj to be competitively equivalent: One
way is �(si,sj ) = �(sj ,si) = 1, i.e., the species can replace
each other; the other is �(si,sj ) = �(sj ,si) = 0, i.e., they
cannot replace each other (standoff). Note that both cases are
observed in nature; mutual active competition was reported
in epifaunal communities [38], while for crustose lichens,
a contact boundary is formed at the encounter of one with
another, and if they are competitively neutral these boundaries
may remain stable over time [32].

Previous implementations [28,35] used a random sequential
update scheme, consisting of repeatedly picking two neigh-
boring sites as source and target of a potential invasion. To
utilize the highly parallel architecture of modern graphics
processing units, we here use a modified updating scheme.
The square lattice is divided into two sets of 2 × 2 chunks.
Each set consists of all chunks that are not directly adjacent

to each other, resembling the set of black and white sites of
a checkerboard. In each chunk of one set a random site is
picked as the target for the potential invasion and a random
neighbor is picked as the source. If the interaction network
contains a link from the invading species to the one occupying
the target site, the invading species becomes the occupant
of the target site. This update step is repeated alternatingly
for the two sets of chunks (black and white). This update
mechanism was chosen to allow parallel updates that guarantee
that the origin of an invasion is never invaded at the same time
[graphics processing unit (GPU) friendly], while preserving a
local dynamics similar to random sequential updates. We have
found no qualitative or quantitative differences between these
simulations and those with random sequential updates.

The rate of introducing new species is parametrized by the
introduction rate α. A new species is introduced at a random
site with a rate of αL−2, where L represents the length of
the lattice. For each potential interaction between the new and
existing species a link is added with probability γ . Additionally
the interaction network will always contain a link from the
new species to the former occupant of the site at which it
is introduced. This definition of α differs from our previous
papers [28,35], where we chose α to be the rate of attempted
introductions of a new species, which were rejected if the
interaction network did not have a link from the new species
to the old one. Thus, the α value used in this paper would have
to be divided by γ when one compares it with previous results.

III. RESULTS

A. Diversity and frozen boundary length

In previous work the diversity of species, defined as the
number of species, was used as the main observable to quantify
the state of the system. The mean diversity shows a sharp
transition from high- to low-diversity values at γ ≈ 0.055
when α is close to zero and N = 1922 [28,35] as shown in
Fig. 1(a). However, the fluctuation of the diversity turned out
to be significant for larger α [see Fig. 3(a), green dashed line],
making the classification of the two states difficult.

It was found that the transition to high- or low-diversity
state is preceded by an increase or decline in the number
of patches (spatially connected sites occupied by the same
species) [35], which can also be used as an indicator of the high

(a) (b)

FIG. 1. (a) Mean diversity and (b) mean length of frozen boundary as a function of interaction frequency γ for different introduction rates
α. N = 3202.
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(a) (b)

(d)(c)

FIG. 2. Snapshots of system in (a), (b) low- and (c), (d) high-
diversity state. (a) and (c) show magnification of upper left corners
of the snapshots (b) and (d), respectively, with marked frozen (black)
and active (white) boundaries. N = 1922, γ = 0.7, and α = 0.0005.

and low states. Among those patches, the most important ones
for high diversity are the patches surrounded by the species
with standoff relations, since those patches will be long lasting.
This can be clearly seen in Fig. 2, where the active boundaries
between interacting species and the frozen boundaries between
standoff relation species are marked in the snapshots of the
high and low states. We found that the length of boundaries
between sites with different species of standoff relationships
[Fig. 3(a), blue dotted line] is a better indicator of the high and
low states with less fluctuation than the diversity [Fig. 3(a),
green dashed line] and shows the transition between the high
and the low states at the same position as the mean diversity for

FIG. 3. Time series of diversity and frozen boundary length with
introduction rate α = 0.003 and interaction frequency γ = 0.16 in
an N = 1922 system. For higher γ and α the diversity (green dashed
line) fluctuations are stronger and the frozen boundary length (blue
dotted line) is a more reliable criterion. The solid red curve shows
whether the system is classified to be in the high or low state, based
on the frozen boundary length. The curve shows the frozen boundary
length threshold value that was crossed for the current classification.

(a)

(b)

FIG. 4. (a) Distribution of boundary lengths with N = 3202, γ =
0.12, for various α. (b) Location of maximum (mode) as a function
of γ .

small α [Fig. 1(b)]. We therefore use this quantity, normalized
with its maximum possible value (2L2), to study the transition
in finite α and call it the frozen boundary length Fl .

B. High state and low state

Figure 4(a) shows the distribution of the frozen boundary
length Fl for different introduction rates α at γ = 0.12. With
growing α, the distribution gains a high mode. For lower values
of α, the peak at large Fl lowers its height and eventually
becomes undetectable. For high α, the peak at low Fl becomes
undetectable. For intermediate values (dashed grey line), the
distribution is bimodal. This is consistent with the observation
in previous work that in the limit of α → 0 no bistability is
observed and the system is exclusively in a low state when γ

exceeds the critical value γc.
For a fixed α, the peak position of the high mode decreases

to Fl ≈ 0 with increasing γ as shown in Fig. 4(b), while
the left peak in low Fl stays always around Fl = 0 if it is
there. Eventually, for high enough γ the two peaks becomes
indistinguishable within our numerical accuracy. Figure 4(b)
also shows that the high peak’s position is rather insensitive to
the system size L and the value of α.

In the following we use the location of the peak of the right
mode of the frozen boundary length m of a given γ and L

with α = 0.256 to classify whether the system is in a high or
low state. More specifically, we record the time series of the
frozen boundary length Fl [e.g., Fig. 3(a), blue dotted line],
and if Fl is longer than 0.5m, then the system is classified to
have entered a high state of samples, until the length of the
boundary drops below 0.1m and vice versa. This allows us to
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(a) (b)

FIG. 5. Fraction of (a) high- and (b) low-state samples over γ and α. N = 3202.

classify the state of the system, as shown by the red curve in
Fig. 3(a).

C. Fraction of time in high and low states

Using the frozen boundary length as a classification
criterion as described in the previous section, we classified
the samples of simulations with different choices for L ∈
{192,256,320} and various α and γ . Figure 5 shows our results
for L = 320.

As observed previously [35], the clearly separated low state
becomes available at γ > γc when α is small enough. The
critical value was found to be γc ≈ 0.055, for L = 192 [28,35].
For larger systems L ∈ 256,320 we find larger critical values
γc ≈ 0.1.

With increasing γ beyond γc, the fraction of time spent in
a high state approaches zero in a continuous fashion, and the
fraction increases with α as shown Fig. 5(a). We observe that
the fraction of time spent in a high state approaches a steplike
shape as a function of γ with a sharp change at γc as the limit
α → 0 is approached, which is consistent with the results
of quasistatic simulations [28] that showed a discontinuous
transition.

When plotting the time spent in a low state over α for fixed
γ [Fig. 5(b)], we find that with increasing α the time in the low
state decreases faster than exponentially at first, but seems to
approach an exponential decline as α increases. This behavior
is observed for all γ > γc. At lower γ we did not find any
low-state samples regardless of α.

In practice we can measure this decline of time spent in a
low state only over a few orders of magnitude (two to four),
due to limitations on simulation time. Consequently, the range
of α values where we can measure this exponential decline
is limited. This applies especially at low γ values, which
exhibit quicker decline (larger absolute exponent). However,
our observations do not indicate any limit to the exponential
decline with increasing α values. This suggests that the γ value
governs whether the low state is available at all (γ > γc), while
α is an orthogonal parameter, which determines how much
time the system spends in a low state if γ > γc.

For different system sizes we observe the same qualita-
tive behavior (we tested L = 192, L = 256, and L = 320).
However, we observe that α needs to be scaled inversely
proportional to the system size to achieve a quantitatively
similar amount of time spent in low and high states (see Fig. 6).

The scaling of α with L can be understood as follows: In a
low state, typically there is only one species in a system. When
a new species is introduced, it will take time proportional to L

for a new species to replace the old one. If the next new species
is introduced after this displacement, there is no chance for the
system to go to a high state. In other words, αL determines the
rate for the system state to switch from low to high.

IV. DISCUSSION

Through extensive numerical simulations, we have consid-
ered the transition between high- and low-diversity states in a
model ecosystem. The simulations show that there is a clear
discontinuous transition at γ = γc, above which the low state,
clearly separated from the high state, becomes available inde-
pendent of the value of α. In the α → 0 limit, the system stays
in the low state for γ > γc, but with finite α, we have confirmed
the bistability between the high state and the low state.

Interestingly, the high state seems to approach the low state
as γ approaches 1, rather independently from α. It is possible
that the high state appears continuously from the low state at
a certain γ . When γ = 1, i.e., when every species can invade
everyone else, the frozen boundary length must be zero and
there should not be any distinction between the high state
and the low state. It would be interesting to confirm at which
value of γ the high state appears, when decreasing γ from 1;
it may continuously appear at γ = 1, or there there may be

FIG. 6. Phase diagram. Classification threshold for the frozen
boundary is questionable in grey area due to boundary length
approaching zero.
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another transition to the high state at γ < 1. In the latter case,
the high state may appear continuously from the low state,
discontinuously with small separation between the two states.
This is difficult to confirm numerically, because of fluctuations
and the small gap between the low and the high states at high
γ we see in our simulations. It should also be noted that our
result cannot exclude some dependency on α of the high state
at high γ , since identification of the high peak is less accurate
at high γ ’s. Further investigation of the nature of this transition
likely depends on the development of analytical insight.

In the present work, we could not identify a critical point
where the two states merge, which would have been expected
in a more conventional phase transition. Further research is
needed to clarify the nature of the transition in the present
model.

Overall, our result suggests that the available states are
solely controlled by γ , while α controls the fraction of time

spent in each state. This may suggest that the available states
are determined by geometrical constraint such as how many
neighbor species exist and can interact for a given γ . It would
be interesting to see the transition in three dimensions where
the geometrical constraints are entirely different from those
in two dimensions or on a different lattice. It could provide
us better understanding of the mathematical structure behind
the transition. It may also provide some insight about the
coexistence of a microbial community, which is often studied
in two-dimensional lattice models with various invasion
rules [20,39] but can form three-dimensional structures in,
e.g., soil and biofilms.
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