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Emergence of diversity in a model ecosystem
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The biological requirements for an ecosystem to develop and maintain species diversity are in general unknown.
Here we consider a model ecosystem of sessile and mutually excluding organisms competing for space [Mathiesen
et al. Phys. Rev. Lett. 107, 188101 (2011)]. Competition is controlled by an interaction network with fixed links
chosen by a Bernoulli process. New species are introduced in the system at a predefined rate. In the limit of small
introduction rates, the system becomes bistable and can undergo a phase transition from a state of low diversity
to high diversity. We suggest that isolated patches of metapopulations formed by the collapse of cyclic relations
are essential for the transition to the state of high diversity.
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I. INTRODUCTION

Multiple species often coexist robustly in natural ecosys-
tems [1,2]. Species interact with each other [3–5] primarily
through competition, cooperation, or predation [6–10]. How-
ever, it is not easy to keep an ecosystem with diversity when
several species compete for the same resources [11,12]. It has
been found that one way to maintain coexistence of multiple
species is to include hypercycles or predator-prey cycles. In
particular, the cycle of three species has been studied in detail.
Coexistence of oscillating populations of three species is found
to be stable in the deterministic case, while noise due to a finite
number of agents always leads the system to a single species
state [13]. Another robust way to maintain high diversity is
to include space [14–19]. Combinations of space and cycles
[20–24] are found to maintain stable coexistence. Further,
nontransitive allelopathic relationships with competition in
two-dimensional space [25–27] have been found to be able
to maintain species diversity on a longer time scale than pure
hierarchical predation relationships.

In our previous Letter [28], a model ecosystem of sessile
and mutually excluding organisms was introduced, where
competition for resources is a zero-sum game about available
space. The model considers predation or allelopathic interac-
tion between species, where a species can invade a space that is
already occupied by another species. It has been demonstrated
that the model shows a sharp transition from multiple to single
species as the number of “predation” interactions is increased.
It has been suggested that the important mechanism behind
the increased diversity is spatial fragmentation of populations
creating isolated niches for new species. In this paper, we
present a detailed analysis of the model ecosystem focusing
on the necessary mechanism for maintaining a high species
diversity. We first demonstrate that the system shows clear
bistability between the low- and high-diversity states, and
the transition between the states is triggered by fragmentation
of populations into many patches. We then demonstrate that
cyclic relations of four and more species result in many isolated
stable patches when one of the species spontaneously dies out
due to noise. This noise is necessary in order to maintain high
diversity.

The paper is divided into four sections. In Sec. II, we
introduce a model ecosystem where sessile species compete
for space [28]. In Sec. III, the creation of diversity in the

ecosystem is analyzed, and finally, in Sec. IV, we provide a
discussion of the stability of the model.

II. MODEL ECOSYSTEM

Our model is inspired by the spatial dynamics of lichen
communities [28,29]. When a crustose lichen meets another,
a contact boundary is formed. The boundary remains stable
over time if the species are competitively equal, but sometimes
bulging boundaries between species can be observed, which
suggests some species can take over another. The model might
also provide insight into the evolution of seaweed [30] or
whole epifaunal communities [31], which grow essentially in
two dimensions and often lack one dominating species. In
our simple ecosystem model, we consider an ecosystem of
multiple species competing on a two-dimensional lattice. At
any given time a lattice site can be occupied by one species
only. The species on a site can invade a neighbor site, provided
that it is occupied by a competitively inferior species.

We characterize the ecosystem by a directed network of
possible species interactions. Interactions are materialized
only when organisms connected by a link are neighbors
somewhere in the system. The aim of our model is to study
ecosystem diversity as we change the number of potential
interactions between species, parametrized by γ . In addition
to this, new species are introduced to the system at a rate α.

Each (time) step of our model consists of two possible
events: (i) Select a random site i and one of its nearest
neighbors j . If the species s(i) at site i can invade the species
s(j ) at site j , i.e., �(s(i),s(j )) = 1, then site j is updated
by setting s(j ) = s(i). Here � is the matrix that represents
the possible interactions. (ii) With probability α × γ /N per
site a new random species s is introduced at a random site j

and assigned random interactions �(s,u) and �(u,s) with all
existing species u in the system. Each of these interactions are
assigned value 1 with probability γ , or otherwise set to 0 [we
do allow for the case �(u,s) = �(s,u) = 1]. The introduced
species s is assumed to be able to invade the previous species
at the site j , s(j ): �(s,s(j )) = 1. [This is the reason why the
introduction probability is proportional to γ ; this is equivalent
to the procedure where a new species s tries to invade a
randomly selected site j at the rate α per system but it succeeds
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only if �(s,s(j )) = 1.] �(u,s) and �(s,u) will not change once
they are introduced.

One time unit is defined as N repeats of procedures (i) and
(ii), which means, per time unit, on average each site makes
one attempt to invade a neighbor, and α new species attempt
to enter the system (the number of new species appearing is
α × γ on average per unit time).

In the following simulations and unless otherwise noted,
we initialize the empty system by introducing a new species
for every step during the first 100 time steps. After a short
transient this initialization leads to a system with a dynamics
fully equivalent to that of a system started with just one species.

Note that this model allows two types of “competitively
equal” species pairs, i.e., �(u,v) = �(v,u) = 0 or
�(u,v) = �(v,u) = 1. The former case represents a situation
where u and v can grow equally well, but one cannot take
over the region that is already occupied by the other, hence
the boundary between u and v is stable. The latter case
represents a more “aggressive” situation; for example, species
u produces toxin to kill species v and vise versa, resulting
in fast and noisy modification of the boundary between the
mutually aggressive species.

III. RESULTS

A. Phase transition between low- and high-diversity states

Previously [28], we have found that the model shows, as
the interaction probability γ is decreased from 1, a first-order
phase transition from a low-diversity to a high-diversity state
at a critical value of γ = γc ≈ 0.055 in the limit of α → 0.
Remarkably, the high-diversity state does not exist in the
random-neighbor variant of the model: When each site is
allowed to access every other site in the system, the interaction
matrix � is not enough to keep high diversity even for small
γ , and the diversity D (defined as the number of species in the
system) always approaches 1 for small α [28].

The high-diversity state is illustrated in Fig. 1(a), which
presents a snapshot of a model ecosystem of size N = L ×
L = 1200 × 1200, with γ = 0.05 and α = 0.01. The different
colors represent different species. We can see that the species
are fragmented into many patches and that there is no cluster
spanning the whole system. In contrast, when increasing
γ to 0.065, the high-diversity state is only metastable and
collapses to the low species state, where one dominating
species interspersed with a few small patches of other species
[see also Figs. 2(a) and 2(b)].

The transition between a high- and low-diversity state can
be obtained only for large enough system size (L � 200).
As long as the system size is large enough, the diversity D

was found to follow a simple scaling of D ∝ L2 in the high-
diversity regime [28]. This can be illustrated more clearly by
analyzing snapshots of high-diversity states.

Figure 1(b) shows the distribution of species size or
abundance (number of sites occupied by a species) and patch
size (number of spatially connected sites occupied by the
same species), where different system sizes are compared
in the left panel. We can see that both distributions change
quite little between L = 200 and L = 1200, and show power
law behavior with exponent −1 (−2) for species abundance
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FIG. 1. (Color online) (a) Figure of a system of size L = 1200
with γ = 0.05 and α = 0.01. (b) Distributions for the total species
sizes (squares) and patch sizes (circles) for different L (left panel,
γ = 0.05) and different γ (right panel, L = 200) in the steady state
α = 0.01 for L = 1200, and α = 0.0025 for L = 200. The data for
L = 200 are averaged over 4 × 108 time steps. The vertical axis
shows the probability scaled by the system size L2 of finding a species
or patch of given size.

(patch size) in the small area regime, while there is a clear
cutoff around 5000. This observation agrees with the scaling
of D ∝ L2 for systems large enough compared to the cutoff.

The high abundance of small patches compared to rare
species implies that part of the species are fragmented into
many small patches (metapopulations). It is this fragmentation
that results in a sharper exponent for the patch size distribution
than the species abundance distribution. When γ is decreased
[Fig. 1(b) right], the diversity D increases, but surprisingly
the patch size distribution remains unchanged. Hence, the
species-abundance distribution must have more weight around
the small abundances. Namely, the increase of diversity with
smaller γ is simply due to the replacement of species in
existing patches.

The first-order transition obtained when increasing γ above
the critical γc ≈ 0.055 is depicted in Fig. 2(a), where the
time-averaged diversity D is shown for various values of
α. It shows a sharp transition in the limit of α → 0. This
transition is associated with bistability of the overall system
behavior, as depicted in Fig. 2(b). This figure shows the
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FIG. 2. (Color online) (a) The time-averaged diversity D as a
function of γ for various α. A sharp transition is seen in the limit of
α → 0. (This corresponds to quasistatic simulation, explained later in
the text.) The connecting lines are for guiding the eye. (b) Probability
density function of the diversity measured over time for a system
of size L = 200. The distributions are shown for a few values of γ

below and above the critical value γc. We see that for γ � 0.06 the
distributions are bimodular. The density is shown along a logarithmic
axis.

probability distribution of D for various γ values, for system
size L = 200 and α = 0.01. We can see that, above γc the
probability distribution for the diversity has two peaks at low
and high diversity, respectively. In contrast, for γ below γc,
the high-diversity state becomes monostable.

B. Emergence and collapse of diversity

Next, we analyze the dynamics of the transition between
high- and low-diversity states in the bistable parameter regime.
Figure 3(a) shows the time evolution of the patchiness P

(number of patches in the system) and the diversity D, for
α = 0.0125, γ = 0.07, and L = 200. We observe that the
transition from low to high diversity occurs at time 6 × 105,
and from high to low diversity at time 2.2 × 106. The transition
looks rather sudden on this scale, but in fact it develops over
thousands of time units. In addition, the transition from high
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FIG. 3. (Color online) (a) Time evolution of the patchiness (line)
and diversity (line with shaded area) for α = 0.0125 and γ = 0.07
for a system of size L = 200. For illustration, typical snapshots
from another simulation data set with the same parameters are
shown for low- and high-diversity states. (b) Relation between the
patchiness and diversity for α = 0.0125 and γ = 0.07, averaged over
100 transitions between low and high diversity. The transition from
low to high (filled circles) diversity is defined as a development
where diversity increases from 3 to above 40. The reverse transition
is marked by filled squares, and defined as a development where
the diversity decreases from 40 to below 3. The patchiness is
averaged for each value of diversity D, and the error bars show the
standard deviations. As marked by the open circles, the patchiness is
independent of the diversity as long as the system is staying in the
high-diversity state.

to low diversity is not simply a reversal of the transition from
low to high. Rather, in both directions, the change in diversity
is preceded by a change in patch size.

This tendency is confirmed in Fig. 3(b), which shows
average patchiness vs diversity over 100 transitions in both
directions. Figure 3(b) also shows that, when the system is in
the high-diversity state (open circles), the patchiness stays at
a high constant value, even though the diversity fluctuates
between around 10 and 60. In contrast, when the system
is at low diversity, the patchiness-diversity plot follows the
branch of the high- to low-diversity transition (data not shown).
Therefore a substantial increase of patchiness is the necessary
condition for reaching the stable high-diversity state.

C. Stochastic patch creation

Emergence of spatial fragmentation through patch creation
is essential for creation of biodiversity in our model. There are,
however, two fundamentally different ways to create patches,
both using the stochastic fragmentation occurring when one or
more species are driven to local extinction.
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FIG. 4. (Color online) Stochastic patch creation in a system when
a new species “light blue (middle darkness)” can invade yellow
(lightest), but at the same time light blue (middle darkness) can
be invaded by one of the species (“Brown”, darkest). The figure
illustrates that patches can be created when species form this purely
hierarchical relationship in a noisy system.

First we show in Fig. 4 that patches can be created by
a purely linear relationship with, for example, three species
A → B → C. While A and C alone can coexist stably
with a well defined fixed border, the introduction of B

makes it possible for A to invade the territory of C. First,
B could, if undisturbed, completely eliminate C. However,
when scavenging the borders of the region occupied by C, B

encounters A, which can invade B. A will then immediately
start invading the area of B in parallel with B’s invasion of
C. As the dynamics is noisy, occasional patches of C will be
left behind within the region of species A, because A cannot
invade C directly.

A second mechanism for patch creation is associated with
cyclic relationships. “Active” cycles are known to produce
many fragmented areas, due to a continuous activity of
invasions. However, this activity collapses if one of the species
goes extinct. In the case of a three-cycle (A→B→C→A,
“rock-paper-scissors”), the collapse leads to a homogeneous
state with a single species (e.g., if A dies out, B will fully
invade the area covered by C). However, if the cycle length is
�4, there is a possibility that a finite number of patches are
left even after the dynamics spontaneously has come to a stop
due to the stochastic extinction of one of the species (e.g., in a
cycle of A→B→C→D→A, if A dies out and B displaces C

before C can displace D, then B and D will coexist). Thereby,
a large enough cycle can create stationary patches without
requiring long-lasting dynamics.

To study patch creation through cycles and their stochastic
termination, we show in Fig. 5 a systematic investigation of
the number of patches produced when a cyclic relationship
is terminated due to the stochastic extinction of one species.
For a given cycle of length C, we initiate C species with a
cyclic relationship by randomly distributing the species in a
square lattice of size L × L. We let the system evolve until the
dynamics spontaneously comes to a halt. Figure 5 shows the
average number of patches left when a cycle is terminated as
a function of system size L. It is clear that, even though the
long cycles do not live as long as the short cycles (see inset
of Fig. 5), they will create more patches when they terminate.

FIG. 5. (Color online) Investigation of breakdown of cycles:
Average number of patches that are left when cycles of length 3, 4, 5,
and 6 collapse due to fluctuations associated with the stochastic update
of the system. The dashed line corresponds to the scaling P ∝ L0.75.
The inset shows the average lifetime of the cycles of length 2, . . . ,6
as a function of system size.

Interestingly, the patchiness P increases with the system size
L with an exponent close to 3/4.

D. Patch creation and biodiversity in the model

In order to examine which mechanism of patch creation
is the most relevant for maintaining the high diversity, we
run the quasistatic version of the model, where a new species
is inserted into the system only after all the activity in the
system has stopped. Occasionally, however, there will be long
periods where several species compete dynamically for the
same area. This is typically due to cycles of length 2 or 3, which
have quite a long lifetime [Fig. 5 inset; see also Figs. 6(b)
and 6(c)]. To shorten these periods, we perform the following
procedure if the dynamics goes on for a time longer than τlimit:
(i) When the active period reaches τlimit, randomly choose one
of the active species (species that can invade its neighbor), k.
(ii) Temporally eliminate all the outlinks for the species k by
setting �(k,i) to zero for all existing species i. (iii) Run the
invasion steps using the new �. (iv) With interval τlimit repeat
procedures (i)–(iii) until all the dynamics are stopped. After the
system has frozen, the eliminated links are reintroduced [i.e.,
�(k,i) will be set to the original values if species k still survive
somewhere in the system] [32], and the simulation is continued
by introducing a new random species. In the following data,
τlimit is chosen to be 4 × 104, but we confirmed that τlimit =
4 × 103 simulation did not change the average diversity (data
not shown). Note that the chosen value of τlimit is long enough
for a linear relationship to come to a halt for system size
L = 200. The quasistatic simulation reflects the biologically
interesting limit where the introduction of new species happens
at a much slower than any ecological dynamics arising from
species interaction and can, hence, be interpreted as resulting
from speciation (rather than immigration).
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FIG. 6. (Color online) Quasistatic simulation of a system of size
L = 200. (a) Diversity of a steady state where short cycles of lengths
below 2,3,4, . . . are prevented from forming in the system. Removing
cycles of length 2 is the same as allowing all cycles �3. The
connecting lines are for guiding the eye. (b),(c) Probability of having
an active cycle of a certain length at a time τ after the introduction
of a new species for, respectively, (b) γ = 0.05 and (c) γ = 0.025.
Notice that the probabilities do not add up to 1, which reflects the fact
that the majority of new species does not activate a cyclic relation.

In [28] we have confirmed that the quasistatic simulation
has two metastable states when γ < γc, one with a high
diversity and one absorbing state where D = 1. The high-
diversity state has a D value close to the one for α = 0.01.

We performed quasistatic simulations with cycles of various
degree. Simulations were started from a state of high diversity
(taken from the steady state with α = 0.025 and γ = 0.05), but
with all interactions (i.e., elements in � for initially existing
species) set to zero at time t = 0. Subsequently, whenever
a new species was introduced, the corresponding entries in
the interaction matrix � were determined according to the
given value of γ , but if it would result in a cyclic relationship
of length less than Cmin, the species was rejected, and a
new species is introduced, which again was assigned random
interactions according to γ . In this way, only cycles of length
Cmin and above can be created.

The resulting diversity in the steady state for a system of
size L = 200 with γ = 0.05 and 0.025 is shown in Fig. 6(a).
The axis label >0 indicates Cmin = 0, which is the original
quasistatic simulation where all cycles are allowed. The axis

labels of, for example, �3 corresponds to Cmin = 3, which
allows all cycles of length � 3. Interestingly, removing cycles
of length 2, 3, and 4 even increases diversity, but further
removal drastically reduces it. When cycles are of length 6 and
larger, the system collapses to a single species (D = 1) with
γ = 0.05, while for γ = 0.025 a diversity >1 is maintained.
However, when even more cycles are removed, also the system
with γ = 0.025 collapses to the D = 1 state. Accordingly,
the cycles of length 5 and 6, in particular, crucially influence
the transition point. This also indicates that patch creation by
linear relationships, which should be present all the time, is
not enough for maintaining high diversity.

The frequency of appearance of active cycles in the qua-
sistatic simulation with Cmin = 0 is investigated in Figs. 6(b)
and 6(c), which shows the probability of having an active cycle
of a certain length at a time τ after the introduction of a new
species for (b) γ = 0.05 and (c) γ = 0.025, respectively. The
length of the active cycle for a given moment is defined as the
largest cycle within active species. We can see that, at τ = 400,
there are many active cycles, but they vanish as time passes,
and at τ = 40 000, most of the cycles left are of lengths 2
and 3, which do not leave patches. This again demonstrates
that the long-lasting dynamics is not essential for keeping
high diversity. Or, in other words, long-lasting sustainable
biodiversity is associated with patch creation occurring on
a short time scale via the breakdown of cyclic relationships.

It should also be noted that, even for τ = 400, the frequency
of active cycle decreases with cycle length, as seen in Figs. 6(b)
and 6(c). Thereby cycles of length 4–6 become central for the
creation of patches: Shorter cycles cannot create patches and
longer cycles are too rare to make a difference.

IV. DISCUSSION

We investigated the mechanism maintaining high biodiver-
sity in a simple model ecosystem. High diversity is maintained
if interspecies interaction parameter γ is below a critical value
γc. In the vicinity of γ = γc, the model shows bistability. One
stable state is characterized by low diversity, which goes to
D = 1 as the rate of introduction of new species α approaches
zero. The other stable state is the high-diversity state, which
exists even in the α → 0 limit. The transition from low to high
diversity is triggered by a spontaneous increase of patchiness,
while the collapse from high to low diversity is preceded
by a decrease in patchiness. Thus the two transitions follow
different paths:

(1) The transition from low to high diversity is driven by
the collapse of extended cyclic relations that create multiple
patches of one species (metapopulations) within the range of
another species. Each of these patches can subsequently serve
as a seed or a shelter for newly arriving species.

(2) The transition from high to low diversity is preceded
by a reduction in patchiness. Low patchiness is equivalent to a
lack of spatially separated shelters, leading to suppression of
coexistence of antagonistic species.

We further found that in order to maintain a balance
between collapse and sustained patchiness, the system relies
on very short-lived cyclic relationships involving more than
five species, whose collapse creates a mosaic of mutually
compatible species.
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There still remain open questions in the transition observed
in the model. One question is the cutoff of the patch size,
which is independent of γ and L (Fig. 1); we do not
understand where the length scale comes from. Another
interesting observation is that, in the histogram of diversity
in Fig. 2, the boundaries between the high- and low-diversity
states are rather γ independent (around 15), even though
the position of the peak in the high-diversity state clearly
changes with γ . The γ -independent boundary might suggest
the existence of a critical minimal biodiversity D∗ needed to
ensure the stability of a high-diversity state. A minimal D∗ also
translates into a minimal system size of L ≈ 150 to support
the high-biodiversity state.

A natural extension of the model would be to include a death
rate that creates empty sites, which can be recolonized from
neighboring sites (e.g., [27]). This is equivalent to a small
probability of species u invading a site occupied by species
v even if �(u,v) = 0. Previously [28], we tested the effect of
death by emptying a fraction of sites prior to the introduction of
new species in a quasistatic simulation. We found that the sharp
transition to high diversity is maintained as long as this fraction

is less than 10%. With finite α, the transition is softened by a
death rate that is small relative to α. If the death rate is high
compared to α, diversity is expected to collapse. How exactly
the transition between high- and low-diversity states depends
on α and the death rate is a biologically relevant question,
which we plan to investigate in the future.

Overall, our model system supports biodiversity through a
self-organized heterogeneity that is fed by the spontaneous
collapse of cyclic relationships. This picture of emerging
complexity contrasts the biodiversity associated with long-
lasting dynamical cycles emphasized in the pioneering work
of Buss and co-workers [25–27]. In this perspective the cycle
duration shown in the inset of Fig. 5 is a minimal investigation
of the Buss scenario, whereas biodiversity in our “evolution”
scenario instead depends on the patches that are left when
cycles collapse.
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