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The dynamics of sharp interfaces separating two nonhydrostatically stressed solids is analyzed using the idea
that the rate of mass transport across the interface is proportional to the thermodynamic potential difference
across the interface. The solids are allowed to exchange mass by transforming one solid into the other,
thermodynamic relations for the transformation of a mass element are derived and a linear stability analysis of
the interface is carried out. The stability is shown to depend on the order of the phase transition occurring at
the interface. Numerical simulations are performed in the nonlinear regime to investigate the evolution and
roughening of the interface. It is shown that even small contrasts in the referential densities of the solids may
lead to the formation of fingerlike structures aligned with the principal direction of the far field stress.
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I. INTRODUCTION

The formation of complex patterns in stressed multiphase
systems is a well-known phenomenon. The important studies
of Asaro and Tiller �1� and Grinfeld �2� brought attention to
the morphological instability of stressed surfaces in contact
with their melts or solutions. In the absence of surface ten-
sion, small perturbations of the surface increase in amplitude
due to material diffusing along the surface from surface val-
leys, where the stress and chemical potential is high, to sur-
rounding peaks where the stress and chemical potential is
low. Important examples of instabilities at fluid-solid inter-
faces include defect nucleation and island growth in thin
films �3,4�, solidification �5�, and the formation of dendrites
and growth of fractal clusters by aggregation �6�. The surface
energy increases the chemical potential at regions of high
curvature �convex with respect to the solution or melt, at the
peaks� and reduces the chemical potential at region of low
curvature �at the valleys� and this introduces a characteristic
scale below which the interface is stabilized.

In systems where the fluid phase is replaced by another
solid phase, i.e., solid-solid systems, the interface constraints
alter the local equilibrium conditions. Here we study a gen-
eral model for a propagating interface between nonhydro-
statically stressed solids. The interface propagates by mass
transformation from one phase into the other. The phase
transformation is assumed to be local, i.e., the distance over
which the solid is transported via surface diffusion or solvent
mediated diffusion is negligible compared to other relevant
scales of the system. Although the derivations apply to a
diffuse interface, we shall here treat only coherent interfaces,
where there is no nucleation of new phases or formation of
gaps between the two solids �7,8�, in the sharp interface
limit. For example, in rocks such processes appear at the
grain scale in “dry recrystallization” �9,10�. Common ex-
amples of coherent interfaces that migrate under the influ-
ence of stress include the surfaces of coherent precipitates
�stressed inclusion embedded in a crystal matrix� �7� and
interfaces associated with isochemical transformations. Most
studies of solid-solid phase transformations have been lim-
ited to the calculation of chemical potentials in equilibrium
and have provided little insight into the kinetics. Here we

investigate the out of equilibrium dynamics of mass ex-
change between two distinct solid phases separated by a
sharp interface. We expand on the recent work presented in
Ref. �11� where we studied the phase transformation kinetics
controlled by the Helmholtz free energy. It was shown that a
morphological instability is triggered by a finite jump in the
free energy density across the interface, and in the nonlinear
regime this leads to the formation of fingerlike structures
aligned with the principal direction of the applied stress.

In the majority of solid-solid phase transformation pro-
cesses, the propagation of the interface is accompanied by a
change in density. For this reason the density is an important
order parameter that quantitatively characterizes the differ-
ence between the two phases. We consider two types of
phase transitions underlying the kinetics, first order and sec-
ond order, which result in fundamentally different behaviors
at the phase boundary. A first-order phase transition occurs
when the two phases have different referential densities and
it typically results in morphological instability along the
boundary whereas a second-order phase transition may either
stabilize or destabilize the interface depending on Poisson’s
ratios of the two phases. A simple sketch of the stability
diagram is outlined in Fig. 1 for relative values of density
and shear modulus of the two phases.

The article consists of five sections. In Sec. II we derive a
general equation for the kinetics for mass exchange at a
solid-solid phase boundary separating two linear elastic sol-
ids. We utilize the derived equations on a simple one dimen-
sional example and offer a short discussion of the order of
the phase transition underlying the kinetics. We proceed in
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FIG. 1. Sketch of a stability diagram for the growth rate of a
sharp interface separating two solid materials. The axes show rela-
tive values of the shear modulus and density of the phases. As will
be shown in Sec. III, the symmetry of the diagram is broken by the
values of Poisson’s ratios.
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Sec. III with a linear stability analysis of the full two-
dimensional problem. In two dimensions, the phase transfor-
mation kinetics gives rise to the development of complex
patterns along the phase boundary. While we solve the prob-
lem analytically for small perturbations of a flat interface,
things become more complicated in the non-linear regime,
and we resort to numerical simulations based on the combi-
nation of a Galerkin finite element discretization with a
level-set method for tracking the phase boundary. In Sec. IV,
numerical results are presented together with discussions. Fi-
nally in Sec. V we offer concluding remarks.

II. GENERAL PHASE TRANSFORMATION KINETICS

Although the equations that we derive for the exchange of
a mass element between two solid phases in a nonhydrostati-
cally stressed system apply to more general settings, we limit
ourselves to the study of two solids separated by a single
sharp interface. The solids are stressed by an external
uniaxial load as illustrated in Fig. 2. In the referential con-
figuration, a solid phase is assumed to have a homogenous
mass density, �0, defined per unit undeformed volume occu-
pied by that phase. After the deformation, the densities are
functions of space x and time t, i.e., �1�x , t� and �2�x , t�. The
average density of the two-phase system is denoted by
��x , t�. Finally, the mass fraction for phase 1 is denoted by c.
In this notation, the mass fraction of phase 2 becomes 1−c.

For nonvanishing densities, the mass-averaged velocity is
defined as

v̄ = cv1 + �1 − c�v2. �1�

Throughout the text, the mass average of any quantity is
indicated by a bar. Similarly, the average specific free energy
density is given by

f̄ = cf1 + �1 − c�f2. �2�

The total specific volume is related to the real densities in the
deformed state �1�x , t� and �2�x , t� by

�−1 = c�1
−1 + �1 − c��2

−1. �3�

The interface separating the two phases is tracked by the
zero level of a scalar field ��x , t� passively advected accord-
ing to the equation

��

�t
+ W���� = 0, �4�

where W is the normal velocity of the surface. It follows that
the interface is given by the zero level set

� = �x���x,t� = 0,for all t� . �5�

The scalar field is constructed such that phase 1 occupies the
domain in which ��x , t��0 and phase 2 occupies the domain
in which ��x , t��0, see Fig. 2. In this notation, the mass
fraction may be expressed as the characteristic function of
the scalar field

c�x,t� = H���x,t�� = �
1, if ��x,t� � 0,

1

2
, if ��x,t� = 0,

0, otherwise.
	 �6�

In the subsequent analysis, we make use of the following
relations �see, e.g., Ref. �12��

�ic = ni��, �tc = − W��, �7�

where ni=�i� / ���� is the normal unit vector of the inter-
face, W=−�t� / ���� is the normal velocity, and ��

= �������� is the surface delta function. Taking the gradient
of the averaged velocity from Eq. �1� and using the above
identities, the following relation is obtained

�iv̄ j =
�v̄ j

�c
�ic + c�iv1,j + �1 − c��iv2,j ,

=
�v̄ j

�c
ni�� + �iv j . �8�

:

A. Kinetics of the phase transformation

The system must satisfy fundamental conservation prin-
ciples for the mass, momentum, energy and entropy. Let us
denote the material time derivative with respect to the mass-

averaged velocity by an over dot, i.e., �̇=�t�+ v̄i�i�. Then,
the local mass conservation can be written in the form

�̇ = − ��iv̄i �9�

and the local momentum balance can be written in the form

�v̇̄i = � j	ij , �10�

where 	ij is the stress tensor.

FIG. 2. �Color online� Two solids separated by a sharp interface.
A compressional force is applied at the margins in the vertical
direction
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The mass fraction of phase 1 satisfies the advection-
reaction equation given by

�ċ = Q��, �11�

where the mass exchange rate Q is confined to the interface
by the delta function �in the sharp interface limit�. Mass
transport by diffusion is negligible in the reaction dominated
regime. This is a valid approximation when the characteristic
length l=D /W, where D is the diffusion coefficient and W is
the velocity of the interface, is small compared with other
relevant microscopic length scales. That is material diffusion
occurs on a time scale much longer than any other relevant
time scale in the system or equivalently the characteristic
length scale formed from the diffusion constant and solidifi-
cation or precipitation rate is small compared to other rel-
evant microscopic scales.

In the linear kinetics, the mass exchange rate is now de-
rived from the requirement that the entropy production has a
positive quadratic form. We start by expressing the conser-
vation of specific energy density e in the form

�ė̄ = 	ij�iv̄ j , �12�

where v̄2=cv1
2+ �1−c�v2

2 since the cross term vanishes in the
limit of a sharp interface.

At equilibrium

ē = f̄ + Ts̄ , �13�

where the free energy is assumed to be a function of the local

strain and the composition, i.e., f̄ = f̄�
̄ij ,c�. By inserting the
energy conservation equation �12� into the time derivative of
this equation, under constant temperature conditions, the ex-
pression

�Tṡ̄ = 	ij�iv̄ j − �
� f̄

�
̄ij


ij
˙ − �

� f̄

�c
ċ �14�

is obtained. The phase transformation is assumed to be slow
and isothermal. From Eqs. �2� and �8� it follows that

�Tṡ̄ = 	nj
�v̄ j

�c
�� + 	ij�iv j − �

� f̄

�
̄ij


ij
˙ −

�f

�c
�ċ . �15�

Given that the strain rate is 
̇ij =1 /2��iv j +� jvi� and using
the symmetry of the stress tensor, we arrive at the expression

�Tṡ̄ = 	nj
�v̄ j

�c
�� + 
	ij − �

� f̄

�
̄ij

�
ij
˙ −

�f

�c
Q��, �16�

where 	nj =	ijni is the stress vector at the interface. From
Eqs. �8� and �9� and using an equation of state of the form
��
̄ij ,c�=�0�c��1− 
̄ii� it follows that

��

�c
ċ +

��

�
̄ij


ij
˙ = −

�vn

�c
��� − ��ivi

⇒
1

�

��

�c
Q�� − �0
ii

˙

= −
�vn

�c
��� − ��ivi

⇒
�

�c

1

�
�Q =

�vn

�c
, �0
ii

˙ � ��ivi.

Using Eq. �3� for the density, the jump in the material veloc-
ity is related to the reaction rate by

�vn

�c
= Q

�

�c

1

�
� . �17�

The direction of the kinetics is constrained by the second law
of thermodynamics which can be expressed in the continuum
form as

�ṡ + �iJi
s = �s, �18�

where Ji
s is the entropy flux density and �s�0 is the entropy

production rate. We consider the case where the entropy flux
is negligible �in the absence of mass and heat fluxes� and
therefore set Js=0. Combining Eqs. �16� and �18�, it can be
seen that the positive entropy production rate leads to the
condition


	nn
�

�c

1

�
� −

� f̄

�c
�Q�� + 
	ij − �

� f̄

�
̄ij

�
ij
˙ = T�s � 0

�19�

on the reaction rate. We now define a constitutive relation
that couples the stress to the strain via the Helmholtz free
energy

	ij = �
� f̄

�
̄ij

. �20�

From Eq. �19� we observe that the entropy is produced only
at the interface, and in the linear kinetics regime the reaction
rate is proportional to �see, e.g., Ref. �13��,

Q � K
	nn
�

�c

1

�
� −

� f̄

�c
� , �21�

where K�0 is a system specific constant.
The normal velocity of a sharp interface is obtained by

integrating Eq. �11� across the interface and taking the sin-
gular part of it

W � v̄n −
K

�
�	nn

1

�
− f� . �22�

Here we introduce the jump in the quantity a from one phase
to another �a�ªa1−a2, where ai is the value of ai in phase i
outside the interface zone as the interface is approached. The
additional interfacial jump conditions of the total mass and
force balance from Eqs. �9� and �10� are given by
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���W − vn�� = 0, �23�

�	ijnj� = 0. �24�

In general, surface energy 
 and surface stresses may
have an important effect on the kinetics at the phase bound-
ary with high curvature K, therefore the expressions given
above are modified to take this into account. For this purpose
we utilize the Cahn-Hilliard formalism �14� of a diffuse in-
terface. The surface energy is obtained by allowing the
Helmholtz free energy density to be a function of the mass
fraction gradients, i.e.,

� f̄�
̄ij,c,�c� = � f̄0�
̄,c� +
�1

2
��c�2, �25�

where �1 is a small parameter related to the infinitesimal

thickness of the interface and f̄0 is the homogenous free en-
ergy density introduced above. Because the composition gra-
dient is small everywhere except for a thin zone at the inter-
face, the free energy can be separated into bulk and surface
contributions. If we now take the limit of vanishing surface
thickness and follow the derivations in the appendixes we
obtain the general jump condition for the normal force vector

�	nn� = − 2K
 . �26�

In the aforementioned expression of the interfacial velocity
Eq. �22� the normal stress vector was continuous across the
interface. In the presence of surface tension, the normal ve-
locity is altered by an additional contribution from the sur-
face energy

W � v1,n +
K

�1
��f� − �	nn���−1� + 2K
��−1�� , �27�

where we have used the interface average defined as �a�
=1 /2�a1+a2�.

B. Example: Phase transformation kinetics in a one-
dimensional system

We start out considering the phase transformation kinetics
of a one-dimensional system composed of two linear elastic
solids separated by a single interface. A force 	 is applied at
the boundary of the system �see Fig. 3� and each solid phase
is represented by its Young’s modulus Ei �i=1,2�, unde-
formed density �i

0, and length Li
0. In the deformed state when

the external force is applied the length becomes Li=Li
0�1

+	 /Ei� and the density �i=�i
0Li

0 /Li. The specific free energy
is given by

f =
	2

2

 c

�1�E1 + 	�
+

1 − c

�2�E2 + 	�� . �28�

In the following, we do not allow new phases to nucleate
within the solids and limit our considerations to the propa-
gation of a single interface separating the solids. The system
is assumed to be isothermal and no diffusion of mass takes
place. The interface moves as one phase, slowly transforms
into the other and an amount �1dL1, of solid 1 is replaced by
an amount �2dL2 of solid 2, with conservation of the total
mass. The phase transformation is assumed to be irreversible
and to occur on time scales that are much larger than the time
it takes for the system to relax mechanically under the defor-
mational stresses.

In the one-dimensional setting the local mass exchange
rate is given by a linear kinetic equation �21� of the form

ṁ1 = − K� 	2

2�0E
−

	

�
� = K� 	2

2�0E
+

	

�0� , �29�

with K�0. In most cases, the contribution from the jump in
the elastic energy density will be small compared to the con-
tribution from the work term �because 	 /E�1, within the
linear elasticity regime�. The change in the total length will
in general follow the sign of the stress

L̇ = L̇1
1 −
�1

�2
� = ṁ1�1

�
� = K� 	2

2E�0 +
	

�0�� 1

�0 +
	

E�0� .

If the densities in the undeformed states are identical, �1
0

=�2
0, the change in the total length is given by

L̇ = K
	3

2�0� 1

E
�2

, �30�

whereas a jump in the referential densities ��1
0��2

0� will re-
sult in a work term given by

L̇ � K	� 1

�0�2

. �31�

Under a compressional load, the dense phase grows at the
expense of the less dense phase �if the two phases have the
same Young’s modulus� and the soft phase grows at the ex-
pense of the hard phase �if the two phases have the same
density�, such that overall the system responds to the exter-
nal force by shrinking. The one-dimensional model cannot
predict the morphological stability of the propagating phase
boundary in two dimensions. It turns out that the work term
destabilizes the propagating boundary under a compressional
load.

C. First- and second-order phase transitions: Equilibrium
phase diagrams

In the above derivations, the reaction rate is determined
by the jump in the Gibbs potential across the phase bound-
ary. Whenever the system is stressed, only one of the two
phases will be stable, i.e., the general two phase system will
always evolve to an equilibrium state consisting of a single
phase. In the absence of an external stress, it is possible for
two phases to coexist without any phase transformation tak-

FIG. 3. One-dimensional system undergoing phase
transformation.
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ing place. In the one-dimensional example, the relevant field
variable is the stress 	 applied to the system and the Gibbs
potential is given by �follows from Eq. �29��

g�	� =
	2

2�0E
−

	

�
. �32�

In Fig. 4 we show an equilibrium phase diagram in the con-
jugate pair of variables 	 and 1 /�. If the derivative of the
Gibbs potential with respect to the external field 	 is evalu-
ated at the critical point 	=0, it can be seen that there are
two possible scenarios. The first scenario is a first order
phase transition, which occurs whenever there is a jump in
the referential densities, i.e., the derivative of the Gibbs po-
tential is discontinuous and the second derivative diverges at
the critical point. The other scenario is a second-order phase
transition, which occurs when the referential densities of the
two phases are identical. We then have a jump in the second-
order derivative whenever Young’s modules of the two
phases are dissimilar.

The order of the phase transition has a fundamental im-
pact on the dynamics. In two dimensions a first-order phase
transition kinetics will generally lead to morphological insta-
bilities of the propagating phase boundary while a second
order phase transition will either flatten or roughen the
boundary depending on Poisson’s ratios of the two materials.
In the next section we analyze the different phase transitions
by performing a linear stability analysis.

III. LINEAR PERTURBATION ANALYSIS

We now solve the elastostatic Eqs. �10� and �26� together
with the kinetics Eqs. �22� and �27� in two dimensions for an
arbitrary perturbation to an initially flat interface using the
quasistatic version of momentum balance in Eq. �10�. In ad-
dition to the translational dynamics observed in the one-
dimensional system presented above, it turns out, that in two
dimensions the interface dynamics is nontrivial and may lead
to the formation of fingerlike structures. The general setup is
shown in Fig. 2, where phase i, i=1,2, has material param-

eters �i, �i, and �i, with �i being the shear modulus and �i
being the Poisson’s ratio. In general, the interface velocity
depends on its morphology, the 6 material parameters and the
external loading 	�. One degree of freedom is removed by
rescaling the shear modulus of one phase with the external
load.

A. Stress field around a perturbed flat interface

In order to evaluate the jump in Gibbs energy density, i.e.,
�F /�0+W�, we need to determine the stress field around the
interface by solving the elastostatic equations. We have that
under plane stress conditions, the local strain energy density
can be written in the form

F =
1

4�

	xx

2 + 	yy
2 −

�

1 + �
�	xx + 	yy�2 + 2	xy

2 � �33�

and the work term is defined as

W = − 	nn�i
−1 = − 	nn�i,0

−1�1 + Tr�
�� . �34�

The trace of strain is given in terms of stress by

Tr�
� =
1 − 2�

2��1 + ��
�	xx + 	yy� . �35�

Note that we could as well have formulated the problem
under plane strain conditions; however, the generic behavior
in both plane stress and strain is the same although the de-
tailed dependence on the material parameters is altered.

We solve the mechanical problem by finding the Airy
stress function U�x ,y� �15� which satisfies the biharmonic
equation �2U=0. Once the stress function has been found,
the stress tensor components readily follow from the rela-
tions

	xx =
�2U

�y2 , 	yy =
�2U

�x2 , 	xy = −
�U

�x�y
. �36�

The biharmonic equation is solved under the boundary con-
ditions of a normal load applied in the y direction at infinity,
i.e., 	yy→−�	���0 and 	xy =0 for y→ ��. The continuity
of the stress vector across the interface follows from force
balance. In addition we require that ux��� ,y�=0.

For a flat interface, the stress field is homogenous in
space. This implies that the Airy stress function is quadratic
in x and y, with coefficients determined by the boundary
conditions. With the boundary conditions specified above,
the stress function for the ith phase can be written in the
form

Ui�x,y� =
�	��

2
�x2 + �iy

2� . �37�

From this stress function we can calculate the Gibbs po-
tential which in the case of dissimilar phases is discontinuous
across the interface. The velocity of the phase transformation
readily follows from the potential

0 σ

ρ
stable

(a)

ρ
2

ρ
1

Q

unstable

0 σ

ρ

unstable

ρ
2

Q

ρ
1

(b)

stable

FIG. 4. �Color online� Part �a� illustrates the phase diagram for
a second-order phase transition in the �-	 plane. The solid-solid
kinetics will always be directed from the unstable phase �dashed
line� to the stable phase as illustrated by reaction path Q marked by
the dashed arrow. The slopes of the densities with respect to stress
are Young’s modules of the materials. Part �b� illustrates the equi-
librium curves of the first order phase transition. For the first order
phase transition one would in general expect to see hysteresis ef-
fects extending the continuous lines �stable regions� beyond the
point 	=0. Here we have shown an idealized case where such
effects are disregarded.
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W0 � �F0/�0 + W0�

= �	��
 1

�1
0 −

1

�2
0� −

�	��2

4

1 − 3�1

�1
0�1

−
1 − 3�2

�2
0�2

� . �38�

The subscript of the free energy density and the work term
refers to an unperturbed interface. From the above equation,
we see that when the lower phase is much denser than the
upper phase, i.e., �1

0��2
0, the interface propagates uniformly

into the upper phase with a velocity W��	���1 /���0, i.e.,
the denser phase grows into the softer. When the densities
are identical or almost identical, �2 /�1�1 and the shear
modules significantly different, i.e., �1��2. When the two
solids phases have identical Poisson’s ratios �, we see that
the softer phase can only grow into the harder one when �
�1 /3.

In the case of an arbitrarily shaped interface separating
the two phases, the analytical solution to the stress field is in
general far from trivial. In-plane problems can in some cases
be solves using conformal mappings or perturbation schemes
�15–17�. Here, we solve the stress field around a small un-
dulation of flat interface employing a linear perturbation
scheme �17�. In the linear stability analysis we now study the
growth of an arbitrary harmonic perturbation with wave-
length k, i.e., h�x , t�=Ae�t cos�kx� with A�1. In Appendix
B, we derive expressions for a general perturbation. The Airy
stress function can be written as a superposition of the solu-
tion to the flat interface and a small correction due to undu-
lation U�x ,y�=U0�x ,y�+��x ,y�, where ��x ,y� is deter-
mined from the interfacial constraints of continuous stress
vector and displacement field. When the wave number k is
much smaller than the cutoff introduced by the surface ten-
sion, we obtain the following expressions for the Airy stress
functions:

�1�x,y� =
− �	��h�x�exp�− ky���1y + ��

k��2�1 + �1���1�2 + �2�
,

�2�x,y� =
�	��h�x�exp�ky���2y − ��
k��2�1 + �1���1�2 + �2�

, �39�

where �i=
3−�i

1+�i
and we have introduced the material specific

constants

�1 = k�1 − �1���2 − �1���1�2 + �2� ,

�2 = k�1 − �2���1 − �2���2�1 + �1� ,

and

� = 2�1
21 − �2

1 + �2
− 2�2

21 − �1

1 + �1
+ 4�1�2

�1 − �2

�1 + �2��1 + �1�
.

From the Airy stress functions, we then calculate the
stress components using Eq. �36� and find the jumps in the
Gibbs energy density from Eqs. �33� and �34�. The evolution
of the shape perturbation relative to a uniform translation of
the flat interface is described by Eq. �27�, namely,

�h�x,t�
�t

� �F + W� − W0, �40�

which in the linear regime corresponds to a dispersion rela-
tion given in the general form as

� �
�F + W� − W0

h
. �41�

Below follows an evaluation of the growth rate for a small
harmonic perturbation to a flat interface. For this perturba-
tion, the general expression for the growth rate follows di-
rectly upon insertion of the Airy functions in Eq. �39� and
then in Eq. �36�, however, the growth rate is not easily ex-
pressed in a short and readable form and we have therefore
limited our presentation to a few special cases. The growth
rate is a function of the six material parameters ��i ,�i ,�i�
and the external stress. Naturally, the stability of the growing
interface is invariant under the interchange of the solid
phases and correspondingly the region of the stability dia-
gram that we have to study is reduced.

B. First- and second-order phase transition: Stability
diagrams

In the second-order phase transition when both solids
have the same referential densities �1

0=�2
0=�0 and when the

Poisson’s ratios �1=�2=� are identical the dispersion rela-
tion assumes a simple form

�

k
=

�3� − 1��1 − ����1 + �2���2 − �1�2

�0�1�2��1 + �2����2 + �1���1 + ��
, �42�

where � is the fraction introduced above and k the wave
number of the perturbation. The expression reveals an inter-
esting behavior where the interface is stable for Poisson’s
ratio less than 1 /3 and is unstable for Poisson’s ratio larger
than 1 /3. Figure 5 shows stability diagrams for the specific
case where �1=1 and �1

0=1 �in arbitrary units�. In panel �A�
the diagram is calculated for two solids that have the same
Poisson’s ratio and with a value �=1 /4. The second-order
phase transition occurs along the horizontal cut �2

0=1 and is
marked by a dashed grey line. We observe that � /k is nega-
tive along this line and the interface is therefore stable. For �
larger than 1 /3 �not shown in the figure� the horizontal zero
level curve will flip around and the grey dashed line will then
be covered with unstable regions. In order to see this flip, we
expand Eq. �41� around the point �1,1�, i.e., in terms of �2

0

−1 and �2−1, and achieve the following expression for the
zero curve:

�2
0 � 1 +

�1 − 2� − 3�2���2 − 1�
��7 + ��

. �43�

Note that the right-hand side is in units of �1. We directly
observe that the horizontal zero curve flips around at the
critical point �=1 /3. In the case when the two solids are
identical, i.e., at the point �1,1� in the stability diagram, all
modes will as expected remain unchanged and the interface
therefore remain unaltered. The other parts of the zero levels
lead to marginal stability but will in general induce a growth
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of the interface due to the unperturbed Gibbs potential �38�.
We now consider a cut in the stability diagram where the two
solids have the same shear modules, �1=�2=�, but different
densities and Poisson’s ratios. For different Poisson’s ratios
the dispersion relation �41� becomes

�

k
=

��2 − �1���1�2
0 − �2�1

0 + 2��2
0 − �1

0���
4�1

0�2
0�

. �44�

From this expression we see that the vertical zero line ob-
served in Eq. �42� and in Fig. 5 panel �A� only exists for
identical Poisson’s ratios. When the solids have different
Poisson’s ratios, the separatrix or intersection of the two zero
curves located at �1,1� in panel �A� will split into two non-
intersecting zero curves. In panel �B� we show a stability
diagram for solids with Poisson’s ratios �1=0.45 and �2
=0.40.

In general the stability diagram is characterized by four
quadrants, two stable and two unstable, delimited by neutral
zero curves. The physical regions would typically correspond
to the quadrants I and II under the assumption that higher
density implies higher shear modulus. In these quadrants the
growth rate is typically positive �i.e., the interface is un-
stable� except for a thin region at the borderline between a
first- and second-order phase transition, i.e., when �2��1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The linear stability analysis revealed an intricate change
in stability depending on the material properties and densi-
ties of the two solids. We explore this stability beyond the
linear regime using numerical methods. The bulk elastostatic
equation �10� is solved numerically on an unstructured trian-
gular grid using the Galerkin finite element method and the
surface tension force is converted to a body force in a narrow
band surrounding the interface. The discontinuous jumps ap-
pearing in the dynamical Eq. �27� are computed at the outer
border of the band. Periodic boundary conditions are used to
minimize the possible influence of the finite system size in

the x direction �parallel to the interface�. The interface is
tracked using a level set method �e.g., Ref. �18�� and propa-
gated with the normal velocity calculated in Sec. II using Eq.
�27�. Several level set functions ��x , t� can be used, how-
ever, most level set methods use the signed distance function
����x , t�� is the shortest distance between x and the interface
and the sign of ��x , t� identifies the phase at position x�.
Good numerical accuracy can be obtained by keeping ��x , t�
a signed distance function at all times, and this is achieved
by frequent reinitialization of ��x , t� according to the itera-
tive scheme

��

�t�
+ S��0������ − 1� = 0, �45�

where �0 is the level set function before the reinitialization,
t� is a fictitious time, and S��0�=�0 /��0

2+ ��x�2, where �x
is the grid size. Generally only a couple of iterations are
needed at each time step, to obtain a good approximation to
a signed distance function, and it is only necessary to update
the level set function in a narrow band around the interface.

In Figs. 6 and 7 we present numerical simulations of the
phase transformation kinetics using parameter regions where
the interface is either stable or unstable. The simulations pre-
sented in Fig. 6 �panels �A� and �B�� represent interface snap
shots of a first-order phase transition dynamics and panels
�C� and �D� simulations of a second order, respectively. In
panel �A�, the values of the parameters were chosen in a
region of the stability diagram where the interface is pre-
dicted to roughen and in panel �B� we have used parameters
corresponding to a stable evolution of the interface. Note that
the interface in both cases is moving from the dense phase
into the soft phase independent of its stability. This is in
agreement with the one dimensional calculation performed in
Sec. II. Panel �C� shows a case of a second-order phase tran-
sition where the interface is unstable, while panel �D� shows
a stable case. We notice that, for second order phase transi-
tions, the overall translation of the interface is changed in
unison with its stability. In Eq. �43� we saw that the stability
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FIG. 5. �Color online� Panel �A�, stability diagram for two solids materials with identical Poisson’s ratio of �=0.25. Panel �B�, diagram
for solids with Poisson’s ratios of �1=0.45 and �2=0.40.
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of the second-order phase transition is dictated by the values
of Poisson’s ratios. For Poisson’s ratio smaller than 1 /3, the
kinetics is stable and the phase of small shear modulus grows
into the phase of higher shear modulus while for higher val-
ues of Poisson’s ratio the behavior is reversed and the inter-
face roughens with time. This also follows from Eq. �38�. In
Fig. 7, we have plotted the mean velocity as a function of
time for the simulations presented in Fig. 6.

V. CONCLUDING REMARKS

In conclusion, it has been shown that the phase transfor-
mation of one solid into the another across a thin interface

may lead to a morphological instability, as well as the devel-
opment of fingers along the propagating interface. We have
presented a stability analysis based on the Gibbs potential for
nonhydrostatically stressed solids and have established a lin-
ear relationship between the rate of entropy production at the
interface and the rate of mass exchange between the solid
phases. The solids are compressed transverse to the interface
and corresponding stability diagrams reveal an intricate de-
pendence of the stability on the material density, Poisson’s
ratio and Young’s modulus. With the density as order param-
eter, two types of phase transitions were considered, a first
and a second order, respectively.
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FIG. 6. �Color online� Simulations of the temporal evolution of solid-solid interfaces for first-order �panels �A� and �B�� and second-order
�panels �C� and �D�� phase transitions. Panel �A� shows a simulation using �1=1.0, �1=1.0 and �2=1.05, �2=2.0. Both phases have identical
Poisson’s ratio �1=�2=0.45. Panel �B� is a simulation run with densities and shear modules similar to panel �A� but with a different Poisson’s
ratios �1=�2=0.25. Panel �C� is a simulation run with �1=1.0, �1=1.0 and �2=1.0, �2=2.0. Both phases have identical Poisson’s ratios
�1=�2=0.45. Panel �D� shows a simulation run with densities and shear modules similar to panel �C� but with different Poisson’s ratios
�1=�2=0.25. The color code represents a time arrow pointing from the darker regions �early stage� to the lighter regions �final stage�.
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For both types of transitions we find expressions for the
curves separating the stable and unstable regions in the sta-
bility diagram. For most material parameters the first-order
phase transition, i.e., when the two solids have different ref-
erential densities, destabilizes the interface by allowing fin-
gers to grow from the denser phase into the other. When the
solids have identical or almost identical densities, i.e., a
second-order phase transition, we find that the stability de-
pends on Poisson’s ratios of the two solids. If the two solids
have Poisson’s ratios less than 1 /3, the phase transition dy-
namics of the two solids will lead to a flattening of the in-
terface, i.e., any perturbation of a flat interface will decay
and ultimately the interface will propagate uniformly from
the soft phase �low Young’s modulus� into the hard phase
�high Young’s modulus�. We believe that our classification of
the phase transition order together with the stability analysis
may find application in many natural systems, since the mor-
phological stability directly provide information about the
order of the underlying phase transformation process and the
material parameters.
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APPENDIX A: SURFACE TENSION

In this appendix we present additional details on the deri-
vation of the reaction rate �27� including the interfacial free
energy. Let us consider a diffuse interface characterized by a
small thickness over which the concentration field varies
smoothly between the constant values in the bulk of the two
phases. In the Cahn-Hilliard formalism, the free energy is
introduced as a function of both the concentration and con-
centration gradients, and has the form

� f̄�
̄ij,c,�c� = � f̄0�
̄ij,c� +
�1

2
��c�2, �A1�

where the first term is the free energy in the bulk and the
second term is associated with the interfacial free energy.
Here �1 is a small parameter related to the thickness of the
interface.

In this case, the calculation of the reaction rate Q pro-
ceeds as in Sec. II. We apply the total time derivative of the
local equilibrium equation �13�, where the free energy is
given by Eq. �A1� and then obtain the following expression:

ė̄ =
� f̄

�
̄ij


ij
˙ +

� f̄

�c
ċ +

� f̄

��ic
��iċ − � jc�iv̄ j� + Tṡ̄ , �A2�

where the commutation relation d
dt�ic=�iċ−�iv j� jc has

been used �12�. Combining the above equation with the con-
servation of energy from Eq. �12� and the entropy balance
from Eq. �18� an expression for the entropy production rate
is obtained:

T�s = 
	ij + �� jc
� f̄

��ic
��iv̄ j − �
 � f̄

�c
− �i

� f̄

��ic
�ċ − �

� f̄

�
̄ij


ij
˙

= ni
	ij + ��ic
� f̄

�� jc
�njQ��

�

�c

1

�̃
�

− 
 � f̄

�c
− �i

� f̄

��ic
�Q�� + 
	ij + ��ic

� f̄

�� jc
− �

� f̄

�
̄ij

�
ij
˙ .

We observe that �s satisfies the second law of thermodynam-
ics provided that the last term vanishes and the rest of the
terms are brought into a quadratic form. This implies a con-
stitutive equation for the stress given by

	ij = �
� f̄

�
̄ij

− ��ic
� f̄

�� jc
, �A3�

and a linear kinetics law with the reaction rate being propor-
tional to

Q � K
�
� f̄0

�
̄ij

ninj
�

�c

1

�
� −

� f̄

�c
+ �i

� f̄

��ic
� , �A4�

where K is a positive local constant of proportionality and 	ij
0

is the elastic stress in the absence of surface tension.
Using Eq. �A1�, the two constitutive laws may be ex-

pressed as

	ij = 	ij
0 − �1�ic � � jc , �A5�

Q = K
	nn
0 �

�c

1

�
� −

� f̄0

�c
+ �1�−1�2c� , �A6�

where 	ij
0 is the elastic stress obtained in Sec. II without the

surface stress.
In the sharp interface limit, i.e., the thickness goes to zero,

the surface free energy becomes

�fsurf = �1��c�2 → 
��, �A7�

and surface stress is related to the surface energy by

	ij
surf = �1��c�2
1 −

�i�

����
�

� j�

����� → 
�1 − ni � nj���.

�A8�

The divergence of the surface stress is then calculated as

�i	ij
surf = 2K
nj��, �A9�

where K is the local curvature.

APPENDIX B: GOURSAT FUNCTIONS AROUND A
PERTURBED FLAT INTERFACE

In this appendix, we explain in details how to calculate
the Airy stress functions around the perturbed flat interface
introduced in Sec. III. All the detailed calculations were car-
ried out in MAPLE in order to handle the lengthy algebraic
expressions.
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The Airy stress function satisfies the biharmonic equation
�z

2�z̄
2U=0. This equation has a general solution which can be

written in the Goursat form U�z , z̄�=Re�z̄��z�+��z��, where
��z� and ��z� are complex functions determined by the
boundary conditions. Combining Eq. �36� with the Goursat
solution, stress components are related to these functions by
the following expressions:

	�z� = 	xx�x,y� + 	yy�x,y� = 2����z� + ���z�� , �B1�

��z� = 	yy�x,y� − 	xx�x,y� + 2i	xy�x,y� = 2�z̄���z� + ��z�� ,

�B2�

where ��z�=���z�. The solution to the biharmonic equation
is determined up to a linear gauge transformation

��z� � ��z� + Ciz + p , �B3�

��z� � ��z� + q , �B4�

where C is a real number and p, q are arbitrary complex
numbers.

The boundary conditions are given by the far-field
stresses and the constraints at the interface. Here we consider
that the system is loaded by a uniaxial compression in the y
direction, 	yy�x ,��=−�	���0. Whenever the two phases are
different an interface is introduced at which we require force
balance and continuous displacement field. The force balance
is expressed by the following jump condition:

�	xxnx + 	xyny + i�	yxnx + 	yyny�� = − 
K�nx + iny� ,

where K is the local curvature and 
 is the surface tension.
From Eqs. �B1� and �B2� we find that the force balance leads
to the following condition on the Goursat functions:

�� + z�� + �̄� = i�
0

s


K�nx + iny�ds , �B5�

where s is a point at the interface. The continuity of the
displacement field across the interface introduces an addi-
tional jump condition given by

� 1

�
�− �� + z�� + �̄�� = 0, �B6�

where � is the shear modulus and �= 3−�
1+� is a constant for

in-plane stress-elasticity determined by the Poisson’s ratio.
The two jump conditions �B5� and �B6� combined with

the far-field boundary conditions ���z�=− 1
4 �1+���	��z and

���z�=− 1
2 �1−���	��z are sufficient to determine the fields

�1�z�, �1�z�, �2�z�, and �2�z�. Superimposing an arbitrary
perturbation with amplitude h�x� on the flat interface, the
Goursat functions are slightly altered. They can be expanded
to linear order in h�x� as follows �17�:

��x� � �0�x� + ih�x��0��x� + ��x� , �B7�

��x� � �0�x� + ih�x��0��x� + ��x� . �B8�

��x� and ��x� are functions of h�x�. Inserting this expansion
into Eqs. �B6� and �B5�, we obtain that the corresponding
jump conditions for the perturbation fields

���x� + x���x� + �̄�x�� = ih�x���0�x�� + f�x� , �B9�

�− ���x� + x���x� + �̄�x�
�

� = ih�x���0�x�
�

� , �B10�

where f�x�= i�0
x
K�nx+ iny�ds. To linear order we find that

f�x��−
�0
xh��s�ds. Eqs. �B9� and �B10� can be rewritten

equivalently as

�1�x� − ��x�1��x� + �1�x�� − �1 +  ��2�x�

= − i�h�x��̄01�x� +
1 +  

1 + �
f�x� , �B11�

�2�x� − ��x�2��x� + �2�x�� − �1 + ���1�x�

= − i�h�x��̄02�x� −
1 + �

1 + �
f�x� . �B12�

The constants appearing above are expressed in terms of the
elastic moduli. Adopting the notation of Ref. �17�, these are
given by

 = �
1/�2 − 1/�1

1/�2 + �/�1
, � =

1/�2 − 1/�1

�/�2 + 1/�1
, �B13�

� = �
1/�1 − 1/�2

�/�2 + 1/�1
, � =

1/�1 − 1/�2

�/�1 + 1/�2
. �B14�

Equations �B11� and �B12� are solved at an arbitrary point z
in the complex plane by applying the Cauchy integral and
using the analytic continuation of each function �15�. Let us
denote the Cauchy integral over the perturbation amplitude

H1�z� =
1

2!i
� h�x�

x − z
dx, with Im�z� � 0, �B15�

H2�z� =
1

2!i
� h�x�

x − z
dx, with Im�z� � 0. �B16�

Notice that the two functions satisfy the following relations:

H1�z̄� = − H2�z�, H2�z̄� = − H1�z�

Im�H1�x�� = Im�H2�x��, Re�H1�x�� = − Re�H2�x�� ,

where the principal value of the Cauchy integral is consid-
ered when x is a point on the real axis.

Thus, by applying the Cauchy integral with Im�z��0 in
Eq. �B11� and Im�z��0 in Eq. �B12�, �1 and �2 are deter-
mined in the integral form as follows:
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�1�z� = − i��0,1H1�z� +
1 +  

1 + �
F1�z�

�2�z� = i��0,2H2�z� +
1 + �

1 + �
F2�z� ,

where

F��z� =
1

2!i
� f��x�

x − z
dx � − 


d2

dz2H�z� . �B17�

�1�z� is calculated from the complex conjugation of Eq.
�B11� when the Cauchy integral is applied on both sides of
the equation and Im�z��0. In a similar manner, �2�z� is
derived from Eq. �B12�. The final expressions for the two
functions then follow:

�1�z� = − i�0,1H1�z� −
1 +  

1 + �

− i��0,2H1�z� −

1 + �

1 + �
F1�z��

−
1 +  

��1 + ��
F1�z� − z�1��z� ,

�2�z� = i�0,2H2�z� −
1 + �

�

i��0,1H2�z� −

1 +  

1 + �
F2�z��

−
1 + �

��1 + ��
F2�z� − z�2��z� .

For a cosine perturbation of the interface, h�x�=A cos�kx�,
with A�1 the Airy stress function, U�x ,y�=Re�z̄��z�
+��z�� is obtained explicitly.
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