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Branching instabilities in rapid fracture: Dynamics and geometry
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We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for
when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches.
The model is based on equations of motion for crack tips which depend only on the time dependent stress
intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress
intensity factors, together with an essentially exact calculation of the static ones. The results of this model are
in qualitative agreement with a number of experiments in the literature.
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I. INTRODUCTION is able to follow the dynamics and the resulting geometry.

The phenomenon of crack division, i.e., the splitting of a (4 How consecutive bifurcations come about, and what
. are the resulting crack patterns?

singl_e primary crapk into two or more br.anc_hes,.whose dy- (5) Can one apply the 2-dimensional theory developed

namics develops mdependentlyz is studied in thin plates Oﬁere 10 microbranching? The answer will be shown to be

different materialgglasses, plastics, metals etid]. A clas- o 9° . . .
egative; there are crucial 3-dimensional aspects of micro-

sical example from more than thirty five years ago is show : : . o )
in Fig. 1, which exhibits a crack pattern observed in a thin ranching that_ need the 3-dimensional theory in its entirety
for an appropriate treatment.

araldite platg2]. In this example the cracks go throughout
the thickness of the sheet. This is to be distinguished fromy, orger to answer all these questions, we take the point of
apparently similar side branching instabilities in which sidey;e\y that the dynamics of the tip of each crack is determined
branches appear in addition to the main crack, when the &5y, the elastic field in its very vicinity. Near each tip one

locity of propagation exceeds a critical val(i@4]. There expands the stress field as usual
exists an important difference between the two phenomena:

in the former cases all the branches crack through the plates (101 =K (t)zi'-(ﬁ,v) +K (t)E:!(ﬁ,v) (1)
(sometime referred to as “macrobranchipgihereas in the REARRA A AN W omr

latter experiments, near the onset of the instability, the side
branches have a width which is considerably smaller than thElerev is the instantaneous tip velocitf, 6} are polar co-
thickness of the platesometime referred to as “microbranch- ordinates at the crack tip ands time.K;(t) andK(t) are the
ing”). Notwithstanding attempts to interpret the latter phe-dynamic stress intensity factors, and the functioBsare
nomenon using 2-dimensional theori&s6], it appears that known universal functions of andv.
the interaction of crack fronts of different thickness necessi- The central element in our model is the adoption of the
tates a 3-dimensional theory which is daunting at present. Ihlodgdon-Sethna equations for the crack t{®. These
this paper we limit our discussion to a 2-dimensional theoryequations were derived in the context of quasistatic crack
that pertains only to plates with cracks going through thepropagation, and were shown to be in agreement with quasi-
plate. static experiments if8]. Here we employ these equations in
The aim of this paper is to develop an approximate theorghe dynamic context, invoking the results and their compari-
of crack dynamics, including crack bifurcations and multiple son with experiments for justification. Consider a local coor-
crack competition. More specifically, we address the follow-dinates system located at the crack tip, in whichnd A
ing questions. denote the tangential and normal directions respectively. For

) ] ) ) ] ] the crack tip locatiorr'® we write the equations
(1) Given a straight propagating crack in a 2-dimensional

material, when and how the first bifurcation occurs? The
bifurcation event itself was studied successfully in a recent
paper by Adda-Bedi§5]. In our approach we are able to
examine the dynamics of the bifurcated cracks.

(2) Given a bifurcated crack, what is the stability of a
symmetric branched configuration? We show that there exist:ss
an instability towards geometric perturbations, making one & ;
branch growing on the expense of the other which gets ar-——————
rested.

(3) What is the geometry of multipldtwo or more :
branches? Obviously the interaction between multiple
branches results in curved cracks. The model that we propose FIG. 1. Crack pattern in an araldite tensile shiggt
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grtie this dependence means freezing the actual configuration that
e =ut, is obtained at timé. The universal functions of the velocity
are given hy
&f 1 1 _U/CR
— =—fK, (t)A. 2 k(v):S<——),=,
P n(t) 2 ! o) T —olc,

Here v is the instantaneous crack tip velocity, ahds a
positive material function. Note that the first of Eq8) is Ky (v) :5<_ l)l__l’/CR (4)
nothing but a geometric kinematic relation that assumes local v/ V1 -vlcg
smoothness of the crack trajectory. The second equation re- L
sults from symmetry considerations, but much physics is hig@nd S(¢) is given by
den in the material functio. Needless to say, these equa lfllcstan_:'-( 4772\;(7]2_(:&2)(0;2_ 772)>
a

tions appear simpler than they really are. The actual g¢)= exp[— - s
calculation of the dynamic stress intensity factors for evolv- 1ley (cs”=27)

ing cracks of complicated geometry is very far from trivial.

The bulk of Sec. Il is devoted to the presentation of approxi- xﬂ} _ (5)
mate schemes to compute these objects. The main idea is to {+7y

relate the dynamic stress intensity factors to their static coun- . . .
terpart[9], and then to compute the latter using the method 16" Cr: Ca @nd Cs are the Rayleigh, dilatational and shear
of iterated conformal maps that had been presented for fraa/yave_speeds, respgctlvely. . .

ture problems in recent papel$0,11]. This material is re- This approximation was shown in the classical theory of
viewed in Sec. IIl. fracfcure mechanics to be ess_entlally exact for sem_l-lnflnlte

Having at hand the stress intensity factors one can usﬁtra'ght crackg12]. In our earlier \{vqu we appl_led this ap-

them in Eqgs.(2) for each crack tip. In Sec. IV we describe proximate methodology for describing interacting Igrge and
how this is done for multiple branch dynamics. We demon-Small cracks9]. The separable form of the dynamic stress

strate that the theory is successful in describing crack bifuri_ntensity factors is trivially correct for very small velocities,

cations, crack arrest, and successive bifurcations. The geori"'¢¢ the f_u_nct|on$<, andk, tend to unity forv —0. For
etry can be studied in great detail and compared wit Inite velocities the separable form is not exact, but we ex-

available experiments. Finally, in Sec. V we consider thePect it to yield good approximations when the velocities are

applicability of this theory to microbranching. As mentioned STall fractions of the typical wave speed and the typical

above, the conclusion is negative. Section VI offers a sumdistance between the evolving tips is small. In fact, when
mary of the paper and some concluding remarks there are more wave reflections between the various branches

of our crack, the better is the approximate form. Once two or
three wave reflections have taken place the dominant dy-

Il. DYNAMICS OF MULTIPLE CRACKS namic interaction is the self interaction of the crack tip with

. ! its immediate vicinity, and the dynamical part of this inter-

To implement Eqs(2) we need first to compute the dy- gt s fully contained in the functiorlg and k,. Physi-

namic stress intensity factors, and second the velacil ¢4y stated, under the specified conditions the waves deliver
the tip of each branch in a multiple branch configuration. Wene required mechanical information that makes the approxi-
start with the stress intensity factors. mation tenable. We will demonstrate below that such condi-
tions are satisfied throughout the dynamics of the branching

A. Estimating the dynamic stress intensity factors |nStab|l|ty, therefore aIIOWing us to use the Separable form

The Kis th lculati f . . quite confidently in the present context. Nevertheless it
e first task is the calculation of thiynamicstress in- 5,14 he stated that it is difficult to quantiéy priori the

tensity factors for a branched configuration. To this aim we C Lo ;
invoke the formalism developed [8], in which the dynamic range of validity of the approximation. Therefore we invoke

. : . ) the final results and their agreement with various experimen-
stress intensity factors were related to their static countert-

o . al results to support the quality of the approximation.
parts. Based on some §peC|f|p examples an appro_X|mate form Clearly, this approximation is a huge simplification, call-
of the dynamicstress intensity factors was obtsalned aS 8ng for solving the static equilibrium field equations rather
product of thestaticstress intensity factoits; andKj; (of the  yna the full dynamical field equations. Of course, one stil
instantaneous frozen configuratjoand universal functions

! ; has to face the difficult problem aftatic non-trivial geom-
of the instantaneous velocity. For each mode of fracture ONGiries. but this problem was solved quitenerallyusing the

writes method of iterated conformal mafis0], and demonstrated in
K, () = ki (0)K(t), the context of complex crack geometries[ iri].
Kii (1) = ky (0K (1). (3 B. The velocity of the crack tips

We note that both the dynamic and the static stress intensity To close Eqs(2) as a consistent mathematical system we
factors are considered time-dependent. For the static objecteed to compute the velocity of each tip in terms of the
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dynamic stress intensity factors. The basic idea is to emplqy g/(Vy) = g|(vi)F|2+ g“(vi)pﬁ 0i. (12)

the energy balance that equates the energy release rate into . ] ] ]
the crack tip regiondenoted byG) to the dissipation in- Note that it would be better to index the stress intensity
volved in the crack propagatiddenoted byl'). The classical factor with an index to stress that each tip contributes its
theory of linear elasticity fracture mechanigk2] provides ~ OWn equation to the set. We avoid it in order not to overbur-

the energy release rate into each tip region: den the notation. Notwithstanding, in case for which the dis-
, sipation functionl becomes velocity dependent, we should
_1-v 2 2 introduce I'(v;)/T'(V,) on the left-hand sidéLHS) of Eq.
G= E [A@)KT+ Ay (0K, 6) (12). Bearing in mind thag,(V,) is a decreasing function, the

result of such a change would be a reductioVj5].

whereE and v are the Young's modulus and Poisson's ratio, g physical grounds one seeks solution of these relations
respectively, andA(v) and Ay(v) are universal functions ¢, non-negative branch velocities. In Ref. [5] it was

given by shown that under thassumptiorthat the branches start their
vz\’m evolution qu_asi-staticallYi.e., v;=0) a solution appears first
A ) = —2d for symmetric branching at,=v.~0.47%. For higher ve-
(1-v)csD(v) locities V,>v, one can have bifurcations in which the
branches start off at a finite velocity.
v&1 _02/05 Finally, we bring the equations of motion to their final
Ay(v) = form as used below. We have no experimental information

— )2 ’
(1-»)cD) about the material functiohin Eqgs.(2). Accordingly we will

’, 5 5 o 25 assumef constant, measure velocities in units @f and
D(v) =4V(1 -veg)(1 -vleg) = (2=ve))®. () length in units ofcy/ fK\”. Let 6 be the angle between the

Note thatD(v) vanishes at the Rayleigh wave speed, t_angentlal unit vector and the:axs. II_)enotmg the ;(ilp posi-

=+cn tion of the straight crack at bifurcation ag, ¢;=|r;*-r|.

For concreteness, consider a two-dimensional infinite me?/e rewrite now the tangential and normal unit vectors at the

dium loaded at infinity with a uniform constant tensile stressiP Of the crack in termsy and a rescaled t|mEKf°)f—>t.
o, Along straight crack propagates at an instantaneous ve-hese changes transform E¢8) into
locity V; at some critical velocity, when the crack length_is 90
the crack bifurcates into two branches of lengflig <L — =v;,
with tip velocities{v;}, defining angleg\; =} with respect to o
the direction of the crack prior to the bifurcation. Freezing
the crack just at the bifurcation we denote its static stress 90 = — Ky (v;
: . ) i (i)Fy. (13
intensity factor as<;"". ot
At each tip of the bifurcated crack we define the normal-
ized stress intensity factors

These equations, in conjunction with Eq42), define our
dynamical system. Note that the velocities are measured in
KS KS units of c. We selectedy=0.25 which impliescy=3c, and

1= o Fu= KO (8)  cz=0.9194, It is important to notice that the set of equa-
! : tions for each branch tip is coupled to the equations for the
EquatingG to I" we can rewrite Eq(6) ateach branch tias  other tips via the function&, and F,. All the results pre-
sented below are obtained by the following procedure: for
_El =g (v)FZ[K(O)]2+g (v)F2[K (92 (9) each instantaneous branched configuration the funcfons
1-2 SR W andF, are calculated using the method of iterated conformal
mappings, then the velocities of the tips are calculated using

F

with Egs.(12) and finally the increments in length and angle are
a() = AW)K(), calculated according to Eqél3).
9i(v) = Ay()K; (v). (10 IIl. STATIC BRANCHED CONFIGURATIONS

Under the assumption thétis velocity independent we ob- A crycial ingredient in our model is the calculation of the

serve that the left-hand side of E§) contains only material = qvic stress intensity factors for an arbitrary branched crack
parameters. Therefore,.a S|m_|lar equation holds for the pur@onfiguration. The general approach to this problem, based
mode | crack propagating with velocity, just before the o the method of iterated conformal mappings, is presented

branching event, in all detail in Ref.[10]. The essential building block is the
Er . composition of the conformal map from the exterior of the
1-.2 =g(VpK7] (11)  unit circle to the exterior of the complicated crack shape,

using a functional iteration of a fundamental conformal map

We conclude that the instantaneous veloeitpf each crack that adds one single bump to the unit circle. This scheme
tip is determined by, according to enables us to solve for the entire stress field for any branched
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2z FIG. 3. The normalized stress intensity factéisand F; for

both tips as a function ok, where =\ is the angle between the
FIG. 2. The normalized stress intensity factisandF, as a  branches(see inset The ratio of branches length and the main
function of A, where 27\ is the angle between the branchese  crack is¢/L=0.5x 1073,
inse). The ratio of branch length and the main crack/it. =0.5
X 1073,

crack configuration. The static stress intensity factors are ex@ndFu for both tips as a function of are shown in Fig. 3.
tracted from the near tip fields using the method explained if© Our best knowledge there is no calculation available in the
finite curvature determined by the size of the bump of theusually in a qualitative agreement with their in-plane coun-
fundamental map which is added at each iteration. Whilderparts we present in the Appendix the calculation for a
appropriate for comparison with most realistic experimentsmode Il asymmetric branched configuration and present the
where some blunting of the crack tip is always present, thigesulting normalized stress intensity factors in Fig. 4. Indeed,
finite curvature means that comparison with mathematicalhe mode | component of the in-plane calculation shows the
models with infinitely sharp cracks should be done with caresame qualitative behavior as its mode IIl counterpart.

In the literature there is only limited amount of works
presenting calculations of stress intensity factors for in-plane
problems with branched crack configurations. In Ré&f 1
such a calculation for an infinitesimal symmetric branched
configuration is provided using a numerical solution of an
integral equation. In order to ascertain the reliability and ac- o.9
curacy of our calculation we consider first a similar configu-
ration, choosing the length of each branch such th&t/L
=0.5x 103, We could not select a smaller ratio due to the og
finite curvature of the crack tigin addition, our numerical
scheme which is based on truncated Fourier expansions car
not deal efficiently with minute geometric details, since the o7
series truncation becomes inaccuyaiéhe normalized stress
intensity factorsF, andF,, as a function of\, where 27\ is 0.65
the angle between the branchsse insetare shown in Fig. 0.6
2. This figure should be compared with Fig. 4 in Ré&i. It
is clear that the figures are in good agreem#ém locations  0-85 ) ) ) 1
of the maximum ofF, and zero crossing of, are nearly 05 . . ; . . ; ; . .
identica), although there is a slight overestimationfpdue 0 005 01 015 02 0-2X5 03 035 04 045 05
to finite size effects.

Second, we considered an asymmetric branched configu- FiG. 4. The mode IIl normalized stress intensity factor for an
ration in which both branches have the same lenjth  asymmetric branched configuration\ is the angle between the
=0.5x 1073, while one of them is located in the direction of branches and the ratio of the branches length and the main crack
the main crack and the other creates an angle)felative  length is€¢/L=0.5x 1073, The upper(lower) curve corresponds to
to that direction. The normalized stress intensity factgrs the forward directior(inclined) branch.

0.85

0.75f
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IV. THE DYNAMICS OF MULTIPLE BRANCHES 1.0
In Ref.[5] it was found that under the conditions that the 1 |—e— (a), V=055 (0)
branches start off quasistaticallyith zero velocity and o8- | (b), V=055 @
with K, =0, the critical velocity isV,=v.~0.47% and the —m— ) V50
branching anglevs is 0.13r. Note that\ is determined by 2 e

the zero crossing dk;; presented in Fig. 2. The velocity is 0.6
“critical” in the sense that it is the first velocity for which
branching is energetically possible. Since there is no specifi=> ]
cation of the mechanism of branching, one should treat it as
a lower bound for the branching velocity. For evafy> v,

one can find a solution with the same(since it is deter-
mined by the independent conditiét, = 0), but with a non-
vanishing velocity of the branches. Indeed, experimentally it
appears that the branches do not emerge quasistatically ¢
implied by the solution of5]. Note that as long a¥,, is not
much larger thar, the branches velocities are relatively
small. Bearing in mind that the distance between the tips is
also relatively small, we can use the separable form of the
dynamic stress intensity factors quite confidently. In this sec- FIG. 5. The velocities of the branches as a function of time for
tion we analyze the post-branching dynamics for variousVy=0.50 andV,=0.55. The resulting dynamics are such that the
physical conditions. unperturbed branch is arrested, while the perturbed one returns after
a short time to the original crack path. A representative resulting
crack pattern is shown in the inset. See text for details.

A. Stability analysis

Motivated by the experimental evidence that symmetricrg regyiting dynamics are such that the unperturbed branch
branches do not emerge quasistatichllg, 14, we study the g 5rrested, while the perturbed one returns after a short time
stability of the symmetric configuration against small geo-, the original crack path. Therefore, the main effect of these
metrical perturbations. We consider the possibility that dy-aitempted branching events is the sudden deceleration of the
_namlcal instabilities pre\_/e_nt the dev_elopment of the branchg a0k We suggest to interpret the instability as a possible
ing event even though it is energetically allowedVgEve.  gyxplanation for the fact that in macrobranching events the
Consider 3a symmetricbranched conflggratlon withL branches do not emerge quasistaticfll$,14 since then the
=0.5x10° and)\:(z).13. Introduce a positive small pertur- ,qiguration is very sensitive to perturbations and probably
bation 5¢=0.5x 10"°¢ to the length of one of the branches, .4nnot be observed on macroscopic scales. On the other
and integrate the dynamical Eq4.2) and (13) for various  pang for larger branching velocities, for which the branches
Vp>uv.. Note that as/, increases so does the velocity of the gmerge with finite velocities, both branches coexist, they are
emerging branches. Figure 5 presents the resulting dynamigsss ynstable to small perturbations and therefore can grow to
for V,=0.50 andV,=0.55. A representative resulting crack jpservable sizes.
pattern is shown in the inset; the unperturbed branch com- -, the framework of stability analysis we also consider the

petes with the perturbed one and eventually dies(o@f, it 5| length of the arrested branch. Denoting & the dif-
gets arrested due to screening effectie velocities of the  forance hetween the final branch length and its initial length

branches are plotted as a function of time. The time to arrest ;e show in Fig. 6 the relative change in length/¢ as a
can be identified as the point where the velocity of the unTu'nction of V,, for two values of the fixed ratia¢/¢. The

perturbed branch vanishes. By comparing the data for th§ependence seems to be approximately linear for both. Note

two branching velocities, it is clear that the time to arrestat the continuation of the lines intersects thaxis at the
increases substantially 83 increases, therefore we deduce . itical branching velocity V,=v.~0.475, below which
C . 1

that the increment of instabilitgecreasesvith increasingvy.  pranching is energetically forbidden. In passing, we note the
We conclude that symmetric branched configurations are Ungemplance of Fig. 6 to the experimental results obtained in
stable agalnst sr'n'all geometrlqal perturbations at least for ”1%] for the microbranching instability. There it was found
branching velocities we considered. We should stress thf{%ee Fig. 3 in3]) that the branch length increases approxi-

largerVy’'s are not considered here due to the expected detgpaiely Jinearly with the mean crack velocity and vanishes
rioration in the quality of the approximation embodied in the o, the critical one.

separable form of the dynamic stress intensity factors. In this
regime it is reasonable to believe that other dynamic effects
are important and might stabilize the symmetric configura-
tion. In particular if the functiod’(v) is an increasing func- In light of the observation of asymmetric branch growth
tion of the velocity, then the faster and longer branch wouldwith one of them arrested, we follow now the evolution of
be relatively punished and its velocity would reduce, allow-the surviving branch. This branch then accelerates to the
ing the shorter branch to catch up. Similarly a velocity de-critical branching velocity and may bifurcate again. In this
pendence of (v) may contribute further stabilizing factors. subsection we study the patterns formed by such multiple

B. Successive branching events
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1 P e d FIG. 8. A crack pattern in a tensile 260120X 5 mm araldite

0.0 [ Lo P plate[1]. The plate was notched symmetrically at the edge. Due to
046 048 050 052 054 056 058 0.60 minute asymmetries in the production of the notches, only one of
Vi them propagates. A second branching event can be observed after

some time. In this event almost symmetric branches emerge from
the branching point and coexist until one outruns the other and then
curves towards the symmetry line. Attempted branching events can
be clearly observed before the successful branching event took
place. All these features are in qualitative correspondence with our
discussion.

FIG. 6. The relative change in lengtt¥/¢ as a function ofv,,
for 8¢=2x1072¢ (lower curvg and 8¢=0.5X 1072¢ (upper curve
Note that the continuation of the lines intersects xhaxis at the
critical branching velocityV,=v.~0.475, below which branching
is energetically forbidden.

successive branching events. In Fig. 7 we present the cragfanching instability(see Fig. 4c ir{4]). This similarity, in
pattern that was formed by three successive branchinggpjunction with the resemblance discussed in relation with
turbation&¢ =2 107¢ to the length of the lower branch. At cantured some of the features of the microbranching instabil-

the second event we introduced a symmetric configuratioty " although it cannot be directly applied in that cdsee
with the samef and A with no perturbation added by hand. gec. .

We stopped the evolution of the system at the onset of the
third event since within our numerical precision we could not
determine its outcome; in some cases it turned out that the C. Symmetric branching
upper branch outruns the lower and in others vice versa. The as discussed above, at higher branching velocities, sym-
results shown in Fig. 7 are in qualitative agreement with thenetric branches can coexist for a longer time, and it is inter-
experimental resu_lts _shown in Fl_g. 8. Unfortunately We Canesting to determine the typical profiles of such symmetric
not offer a quantitative comparison due to the paucity Ofyranches. Consider an experiment in which a crack of length
experimental details, in particular the time dependence of the i, 4 long strip of widthW bifurcates and two symmetric
crack evolutior_L In our theory velocities and lengths are resy anches of lengtli emerge. As the branches start propagat-
caled as explained above, and we therefore can compare oqwg with K,, =0, they cannot change their direction as long as
the postmortem geometry. _ ~ ¢<L,W. On the other hand, whef grows to the order of
We note here that the seemingly up-down anti-correlationhe smaller betweeh andW, the branches will curve. In our
between the winning branches of successive events in Fig-tﬂeory there is only one length (the system is infiniteand
is reminiscent of the spatial ordering observed in the microye study the curving of branches of length comparable. to
oy Figure 9 shows several branching scenarios for different
———— branching length_. It is tempting, after the example 8],
to fit power laws to these profiles. The different profiles can
be approximated in the limited range that we consider by a
power lawy ~ x¢ with 0.7< < 0.8. The fit in the figure cor-
responds t@y=0.8 and was added as a guide for the eye. It
should be immediately said however that the profiles are
neither universal nor true power laws. They represent a tran-
FIG. 7. The crack pattern that was formed by three successivéi€nt behavior between two straight lines. Initially the
branching events. The branching velocity was seV4e0.5, i.e., Pranches start off with an angler=0.13r. Finally there is
slightly more tharv,. We introduced a positive small perturbation an asymptotic fixed angle that depends on the geometry of
80=2x10"2( to the length of the lower branch. Upon reaching the the system. In an infinite medium this final angle satisfies
branching velocity again we introduced a symmetric configurationd<<A <0.13, while in a strip of finite widti\=0, i.e., the
with the samef and\ with no perturbation added by hand. The bar branches propagate eventually parallel to the boundaries of
shows the scale of the process relative to the initial crack lebhgth the strip.
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107°L
0.04 — L=50 I I
L=100
—— L=200 /
0.02- | — L=400
- - Fit
FIG. 11. A typical resulting configuration for asymmetric
§ 0.00 branching. The side branch is almost immediately arrested, while
the main branch temporarily deflected from its straight path. The net
effect of such an event is a strong fluctuation in the velocity of the
-0.02 main branch. The bar shows the scale of the process relative to the
initial crack lengthL.
—0.04

Figure 11 shows a typical resulting configuration in which
| | | | the velocity of the main branch fluctuates in a way similar to
0.00 0.02 0.04 0.06 0.08 0.10 the experimentally observed velocity fluctuations, while the

x/L side branch was almost immediately arrested. Since we were

mainly interested in the dynamics of the side branch, i.e., its

FIG. 9. Symmetric branching dynamics for different branching trajectory and lifetime, we concluded that a model that treats
lengthL with V,=0.5. The plot shows the various crack patterns inthe main macroscopic branch and the microscopic side
rescaled coordinates. A power lgw-x¢ with {=0.8 was added as pranch on equal footings is doomed to fail. The meaning of
a guide for the eye. this result is that the energy flux into the microscopic side-

branch is dramaticallyjunderestimatedn a 2-dimensional

As an example of the relevance of our calculation to acimodel. We tried to increase artificially the energy release rate
tual crack branching events, Fig. 10 shows two shadow phoS into the near tip region of the side branch by a constant
tographs of different stages of a symmetric branching everfiactor, such as to increase its initial velocity. Nevertheless,
in a glass plat¢l]. The left panel shows the onset of branch-the velocity of the side branch dropped immediately to zero,
ing with straight branches as long és$s smaller tharl. and  reflecting the huge screening effect of the main branch.
W. The right panel shows the developed branching configuTherefore, although some of our results in Sec. IV show

ration. The similarity with Fig. 9 is obvious. similarities with various features of the microbranching in-
stability, we propose that the phenomenon of microbranching
V. HOW ABOUT MICROBRANCHING? is essentially 3-dimensional and cannot be modeled directly

by a 2-dimensional theory.
With the relative success of the model proposed here in
reproducing the typical geometry of macrobranches it is of
course tempting to see whether also the geometry of micro- VI. SUMMARY AND CONCLUSIONS

branches can b_e gleaned from the present 2-dimensional |, summary, we have introduced dynamical equations of
theory. To this aim we have attempted to follow the dynam-mqtion for crack tips which depend only on the stress inten-
ics of a side branch in an asymmetric configuration in whichg;ty factors at the tips. Generally speaking, the calculation of
the main branch is forced to emerge in the forward directionipege objects is daunting. By adopting an approximate sepa-
see the inset of Fig. 3. We selected 0.2 such thak of the  rapje form for the dynamic stress intensity factors in terms of
side _branch is approxmately_zero. This initial configurationipeir static counterparts and universal velocity dependent
was introduced as a constraint on the system to reflect thgnciions we achieved a huge simplification that results in
local symmetry breaking observed in experimei®s Gen-  ractable dynamics. Instead of complicated field equations
erally, this asymmetry results in a velocity difference be-ye can reduce the theory to ordinary differential equations
tween the side branch and the main branch. for the crack tips. Complex events like crack bifurcations,
branch competition, branch arrest and successive bifurca-

tions are studied in detail and compared with experiments.
The good news is that the comparison with experiments is
X encouraging; more quantitative comparisons call for new ex-
1 e 1 —<

periments that will take into account the proposed insights,
including measurind(v). The bad news is that the quality of
the approximation cannot be easily assessed from first prin-
ciples. One expects that for low velocities and small dis-
FIG. 10. Two shadow photographs of a symmetric branchingtances between the multiple crack tips the approximation
event in a 306X 100X 9 mm glass plat§1]. The left panel shows should be quite good. What is the range of validity can at this
the early stages of the branching process where the branches ##@int be gleaned only from comparison with experiments,
almost straight, while the right panel shows the developed curve@nd these are relatively old and not detailed enough, maybe
branching configuration. giving the false impression of a good agreement. It thus
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seems very worthwhile to condunew experiments in light ested in the stress intensity factors for the various crack tips.
of this theory in order to test it in some detail. The gainedThe solution for Eq(Al) is given by

transparency and simplicity of the theory seems a very good 1

motivation for such an undertaking. u,(X,y) = Z[(P(Z) + (2], (A4)
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APPENDIX: STATIC MODE IIl ASYMMETRIC vicinity of a given crack tipz, we use the following expan-
BRANCHING sion:
The aim of this appendix is to derive the static stress Ky

intensity factors at the tips of an asymmetric branched mode o1, 0) = ==sin(6/2) + O(\r),

[l configuration. Since the mode Il problem is described by V2t
Laplace equation for the displacement fielgx, y) K
2 - o1, 0) = —cog /2) + O(\). A6
V2Uy(x,y) = 0, (A1) w1025 =cos0/2) + O(\D) (6)

the solution of this problem is readily given if the conformal

map, z=P(w), from the exterior of the unit circle to the These two equations can be rewritten as

exterior of a branched crack configuration is known. The . —ie'?K,, -
general formalism for obtaining such a map is known in the 011, 6) —iog(r,6) = 2w +O(r). (A7)

literature for a long timg2]. Here we adapt the general
formalism to the problem at hand and solve it. Consider thedn the other hand, near the crack tips we can expand the
following map conformal map to obtain

D(w) = Ao H(w - e)M(w - €92 2(w - )3, (A2)

whereA is a real constant, € oy <a,<az<2m andAz=2
—N1—\y. The points{€*k} are mapped to the origin and
theref.ore. are branch points. Faf_; < < a, the phase of . D' () = P"(w)(w - wy) = V20" (w)(z-2). (A8)
®(w) is fixed by the crack branch angle and a local maxi- o )

mum of |®(w)| is obtained at. The parameters of the The last expression, in the light of EGA5), shows the ex-

map, i.e.A, {a} and{B}, can be calculated by demanding plicit relation between the square root singularity of the
that for w=1 argz)=0 and by the conditionsb’(6)  Stress field near the crack tip and the derivative of the con-

) — 7 —ral (%70 \vi —vk-1y
=0,|®(A9|=¢,. Here {¢,} are the lengths of the crack formal map. Let us denote-z=re w0 with § =25\

- . d consider the direction tangent to the crack tip, iée.,
branches. These three conditions can be translated into tlie ) X .
following set of equations =0. By comparing Eq(A5) with Eq. (A7) we obtain

3 _ .
> aj\j=2m, Kin =1¢" (@) ) —(D”(wk)eiﬁk”' (A9)

=1

1
2= 2= P(w) = Play) = S () (= o)?,

With this result at hand we can calculate the stress intensity

3 o factor at each tip since the solution in theplane is known

> )\jco(<c—vl—ﬂk> =0, to be

- 2

=1 ~ - _

o(w)=— I(TyzA[w - w1, (A10)
3 N © . N .
B\ | whe_r_ecryZ is the app_lle_d stress at infinity. Now we are in a

4AHl S'”( ) =t (A3) position to analyze infinitesimal asymmetric branched con-

]:

figurations. We choosé =L, €,=¢3=€, \y=1—-\ and \,
which can be solved numerically. Having the conformal map=\ with ¢/L=0.5x 10°3. The resulting stress intensity fac-
for the required configuration at hand we are mainly inter-tors are presented in Fig. 4 in the text.
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