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Scaling exponent of the maximum growth probability in diffusion-limited aggregation
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An early (and influential scaling relation in the multifractal theory of diffusion limited aggregatibh.A)
is the Turkevich-Scher conjecture that relates the expoagptthat characterizes the “hottest” region of the
harmonic measure and the fractal dimendibof the cluster, i.e.D=1+ «,;,. Due to lack of accurate direct
measurements of bofd and a,,;,, this conjecture could never be put to a serious test. Using the method of
iterated conformal map®) was recently determined &= 1.713+0.003. In this paper, we determing,;,
accurately with the result,,;,=0.665+=0.004. We thus conclude that the Turkevich-Scher conjecture is in-
correct for DLA.
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Multifractal measures are normalized distributions lying  Of particular interest are the values of the minimal and
upon fractal sets. As such, they present rich scaling propemaximal valuesga i, and a,ax, relating to the largest and
ties that have attracted considerable attention in the last twsmallest growth probabilities, respectively. The maximal
decades. In this paper, we address the harmonic measure wdlue a5 Was a subject of a long controversy that was
diffusion limited aggregate$DLA) [1], which is the prob- settled only recentlycf. Refs.[8,9], and references thergin
ability measure for a random walker coming from infinity to The issue ofx,;, appears to be one of the last of the multi-
hit the boundary of the fractal cluster. This was one of thefractal properties of DLA that has resisted settling. This is
earliest multifractal measures to be studied in the physic¢he subject of this paper.
literature[2], but the elucidation of its properties was made Consider DLA clusters containing particles of radius
difficult by the extreme variation of the probability to hit the \/\,, and denote the radius of the minimal circle that con-
tips of a DLA versus hitting the deep fjords. Thus, the un-tains the cluster a®,. An incoming random walker from
derstanding of its scaling properties has been a long standirigfinity has some probability to hit any of the existing par-
issue. These scaling properties are conveniently studied ugicles of the cluster. Denote the maximal of these probabili-
ing the notion of generalized dimensioBg, and the asso- ties asp,,.,. The average of these probabilities over many
ciated f(«) function [3,4]. The simplest definition of the clusters o particles appears to scale as
generalized dimensions is in terms of a uniform covering of
the boundary of a DLA cluster with boxes of siZe and \/Xo
measuring the probability for a random walker coming from <pmax>~(R—
infinity to hit a piece of boundary that belongs to fltle box. n
Denoting this probability byP;(¢), one consider3]

Xmin

~n oo, 3

where for the last step we have used the obvious scaling law
n~(R,/v\o)P. Turkevich and Scher have made the plau-

In > PY¢) sible assumption that the position of the cluster particle as-
= I . . . .
. i sociated withp,,,ax IS at the outermost tip of the cluster. Thus,
Dq=€“moq_1 ne (1) 3 scaling relation can be derived by stating that upon adding

a new particle to the clusteR,, will grow by one unityx,
with probability p,,,ax Or will not grow at all with probability
where the index runs over all the boxes that contain a piece1—p,,,,. Then

of the boundary. The IimiD()EIim(H(J+Dq is the fractal or

box dimension of the cIusteDlinm%l+Dq and D, are

) . ) ] - d_RN \/)\_ ~nlb-1 (4)
the well known information and correlation dimensions, re- dn oPmax '
spectively[5-7]. It is well established by noJ4] that the

existence of an interesting spectrum of valisis related  \here again the last step stems from the definition of the
to the probabilitiesP;(¢) having a spectrum of “singulari-  f4ctal dimension. Equating the right-hand side of E@S.

ties” in the sense thaP;({)~{“ with « taking on values 5.4 (4) we get the Turkevich-Scher conjectytkd]
from a rangeain<a<anax. The frequency of observation

of a particular value of is determined by the functioi( «),

where[with 7(q)=(q—1)Dy] D=1+ ami,. (5

We will show here that this conjecture is incorrect simply
97(q) @) because the position of maximal probability net at the

fla)=aq(a) = (q(a)), aq =a(a). outermost tip of the DLA cluster. In fact, one can introduce
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that was shown to be extremely useful for dealing with DLA
and related growth processes. The method was amply de-
scribed before, so we just remind the reader that it is based
on compositions of fundamental conformal mafs, which

map the exterior of the unit circle to its exterior, except for a
little bump ate'? of linear size proportional tg/\. The com-
position of these mappings is analogous to the aggregation of
random walkers in the off-lattice DLA model. We shall here
use the mapping introduced in REE0], which produces two
square root singularities that we refer to as the branch cuts,
and the tip of the bump which we refer to as the microtip.
The dynamics is given by

2 3
log1o(n) OO(wW) =" D¢, , (W), 8

FIG. 1. The average g,y (upper, black lingandpy;, (lower,  whered (" maps the exterior of the unit circle to the exterior
gray line versusn. The average is over 20 clusters of sizes up topf the cluster ofn bumps. The size of theth bump is con-
n=100000. From the values of the slopes we estimaig,  trolled by the parametex, and in order to achieve particles
=0.681+0.014 anday;,=0.713+0.012. of fixed size we have that, to leading order,
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in analogy to Eq(3) a scaling law for the probability to hit No
the actual tip of the clustgthe particle which is a furthest TR 9
away from the origih i.e., |® (€'

g e Using the iterated conformal maps it is very easy to keep
(Prin)~ N0 ~n~ @ip/D, (6) track of where the maximum growth probability is located,
ptlp R N .
and where the outermost tip is as more particles are added.
Let us assume that at tha{ 1)th growth step, the site with
the largest probability is located at the angjg,, on the unit
circle, i.e., for allg,

A scaling law

D=1+ ay, 7)
. . 1 1
is then a tautology. We will show that for DLAw, Y = STPIRTNE (10
> ain- @D (efmay)| @Y (e!Y))|
To achieve accurate estimatesaf,;, (and in passing of When we add a new bump in theh growth step, the

@ip), We resort to the method of iterated conformal mapsposition of maximal probability may not changep to rep-
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FIG. 2. The upper panel shows data pf,.,) versusnfor A\;=0.8, 0.9, 1.0, 1.1, 1.2. The lower panel shows the same data plotted versus

the scaling variable defined in E(L2). The estimated values ¢f and § that lead to the best data collapse, using least squareg,ate
=0.389, 6= 0.505. We therefore have froMd~1.713 thatw,;,~0.666.
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~ DLA.
FIG. 3. Data ofa,;, estimated using Eq15) with n=n+1.
The data are fitted with a cubic polynomial. The polynomial inter-
sects they axis at the valuex,;,=0.665. Using upper and lower (Pmax = f&ﬁ(x)'
values of§, §=0, and§=1 we estimate the following bounds on (12

the value ofa i, 0.66X< ap,;;<0.669.

1
x=—(n+6) "%,
arametrization of the anglé,,,,) or move to the new bump.

Vo
We can easily find the reparametrized angle and determine . .
the new posit)i/on from P 9 where we have denoteg= «,i,/D. The difference with Eq.

(3) is thatf 5 5 is in general not a linear function of its argu-
ment, except at exceedingly small valuexoivhenn is very

1 1 large. In Fig. 2, we demonstrate the existence of the scaling
Pmaxn=Max ———— - YT ) function and the excellent data collapse achieved using it. In
[ DIV () g (€"ma))] | D" ()| the upper panel, we pldts 5(\o,n) for five values ofx, and

(11 1=<n=<250. In the lower panel, the same data are collapsed
using the single scaling variable. We draw the reader’s atten-
) ) tion to the following two observationsi) the data collapse is
If Pmaxn is located atf, we put Omax= 0, in the (M+1)th 5y 4ilable immediately, even for the smallest values B2,
growth step. Similarly, we track the positidamax on the  anq (ji) the scaling function is not linear throughout the
cluster by finding the valud,;, that assigns the maximal range explored here. Thus, the scaling ¥is not obeyed
value F’ﬂq)(n)(eI ’)|. We computepy;, there as M)(nw- _ yet for values oh of the order of a few hundreds. The set of
_ A direct measurement O, and ayp is displayed in - parameterg and 8 which give the best data collapse in the
Fig. 1. From the direct measurement we fiagj»~0.681,  |ower panel arg8=0.389 ands=0.505. These parameters
while ay;,~0.713. Clearly, the latter is in agreement with gre ysed in the lower panel and give the estimafg,

Eq. (7), while the former is in disagreement with E())  —0.666 when assuming that the fractal dimensionDis
(taking as a datum the result of Refl12], D=1.713 _q 713
*=0.005). An even more accurate determinationagf;, is achieved

The direct measurement, while correct, cannot guarantegext. Taking the data collapse as an evidence for the exis-
that very slow convergence of the power laws as a functioRgnce of a scaling function, we conclude that for any two

of n may somehow hide an asymptotic identity @f,;, and . T . .
@ip . To remove this problem, we now adopt the scalingpalrs of numberst(,\o) and (1,)) that satisfy the equation

function technique of Ref12] to achieve an accurate deter-

mination of «,;,. In this approach, one acknowledges that 1 U 1 e D
Eq. (3) may be realized only asymptotically for high values \/——(nJr 0)  “min'Z = —\/~_(n+ g)  “min'2 (13
of n. For low and medium values of, (ppay, Which is a Ao Ao

function of the discreten and of A, is in fact a scaling
function of a single scaling variable, it follows that
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f55000,M =15 45(Xo.N). (14) 0.662< a/i,<0.669. (16)

These equations offer a calculational procedure. We find ) ) )
(Pmay) fOr @ givenn and o, and then for another value We thus conclude the analysis with the estimaig;,

. . =0.665¢0.004.
seek the value\, for which (py,,) is the same. From Ed.  Fina)y we explain why the Turkevich-Scher conjecture
(13), we then deduce that (5) fails. The reason is that the points corresponding, i@y
1 Inhe—In andpy;, are not at all the same in typical DLA. In Fig. 4, we
Umin== 0 -0 ) (15) present the calculated value Bf,, computed from the posi-
2 In(n+8)—In(n+6) tion of largest|z| on the cluster, compared with the position

) ) _corresponding to the maximal harmonic measure. We see
In Fig. 3, we present the results of such a calculation withhat the position of maximal probability fluctuates wildly,
n=n+1, and =n=<250. Sinces is not knowna priori, we  and the fluctuations do not appear to go down with the in-
used the value5=0.505 that was extracted from the datacrease in the cluster size. The loss of the conjectfie
collapse in Fig. 2. We checked the sensitivityddoy brack-  means that there is no clear connection between the spectrum
eting the results witld=0, and5=1 respectively. The data of singularitiesf(a) and the fractal dimension of DLA. As
in Fig. 3 correspond tad=0.505. Fitting the data with a said above, the relatiof¥) is a tautology once the existence
cubic polynomial and extrapolating t®—0, we get the of the scaling law(6) has been establishdd3]. Since the
value a,i,~0.665. On the other hand, if we repeat the pro-value ofa;;, has nothing to do with the edge of thespec-
cedure using the values of<05<1 we are able to bracket trum, it appears as hard to determine it from first principles
the estimate in the interval as to determine the dimensi@itself.
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