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Multifractal structure of the harmonic measure of diffusion-limited aggregates
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The method of iterated conformal maps allows one to study the harmonic measure of diffusion-limited
aggregates with unprecedented accuracy. We employ this method to explore the multifractal properties of the
measure, including the scaling of the measure in the deepest fjords that were hitherto screened away from any
numerical probing. We resolve probabilities as small as®%0and present an accurate determination of the
generalized dimensions and the spectrum of singularities. We show that the generalized dini2psioas
infinite for q<g*, whereg* is of the order of-0.2. In the language df( @) this means that,, s finite. The
f(a) curve loses analyticitithe phenomenon of “phase transitiordt a,,,, and a finite value of (a5, . We
consider the geometric structure of the regions that support the lowest parts of the harmonic measure, and thus
offer an explanation for the phase transition, rationalizing the valug*oind f(ap.,). We thus offer a
satisfactory physical picture of the scaling properties of this multifractal measure.
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. INTRODUCTION box dimension of the clusteD,=lim__,.Dq andD, are
) ) o _ the well-known information and correlation dimensions, re-
Multifractal measures are normalized distributions lying gpectively[2,12,13. It is well established by nowl1] that
upon frgctal sets. Such measures appear naturally_m avariefie existence of an interesting spectrum of valDesis re-
of nonlinear physics context, the most well studied beingated to the probabilitie®;(~) having a spectrum of “sin-
natural measures of chaotic dynamical _sys.tém.SS]. Other gularities” in the sense thaP;(/)~/* with « taking on
WeI_I-studled examples are the voltage distribution of random, | ;es from a range < a<am. The frequency of obser-
resistor networkg4,5]. In this paper, we address the har-aiion of 4 particular value of is determined by the func-
monic measure of _d_|ffu5|on-l|m|ted aggregatdsLA) [6], tion f (a), where[with (q)=(q—1)Dg]
which is the probability measure for a random walker com-
ing from infinity to hit the boundary of the fractal cluster. 97(q)
This was one of the earliest multifractal measures to be stud- f(a)=aq(a)—dq(a)], o) _
ied in the physics literaturg7], but the elucidation of its aq
properties was made difficult by the extreme variation of the
probability to hit the tips of a DLA versus hitting the deep  The understanding of the multifractal properties and the
flords. With usual numerical techniques it is quite impossibleassociated («) spectrum of DLA clusters have been a long
to estimate accurately the extremely small probabilities testanding issue. Of particular interest are the minimal and
penetrate the fjords. Contrary to harmonic measures of cormaximal valuesa,;, and an,ay relating to the largest and
formally invariant fractals such as random walks and percosmallest growth probabilities, respectively.
lation clusters whose multifractal properties can be solved The minimal value ofa is relatively easy to estimate,
exactly [8,9], the present multifractal measure posed stubsince it is related to the scaling of the harmonic measure near
born barriers to mathematical progress. the most probable tip. While the often cited Turkevich-Scher
The multifractal properties of fractal measures in generalconjecture[14] that a.,;, satisfies the scaling relatioD,
and of the harmonic measure of DLA, in particular, are con-=1+ a,,;,, is probably not exact, it comes rather close to the
veniently studied in the context of the generalized dimen-mark. On the other hand, the maximal valueaofs a much
sionsD, and the associatefd ) function[10,11]. The sim-  more subtle issue. As a DLA cluster grows the large branches
plest definition of the generalized dimensions is in terms of &creen the deep fjords more and more and the probability for
uniform covering of the boundary of a DLA cluster with a random walker to get into these fjor@sy around the seed
boxes of size”, and measuring the probability for a random of the clustey becomes smaller and smaller. A small growth
walker coming from infinity to hit a piece of boundary that probability corresponds to a large value @f Previous lit-
belongs to the’th box. Denoting this probability bf?;(/), erature hardly agrees about the actual valuexgf,. En-
one consider$10] semble averages of the harmonic measure of DLA clusters
indicated a rather large value af,,~8 [15]. In subsequent
N>, PI(/) experiments on non-Newtonian fluid&6] and on viscous
L [ fingers[17], similar large values of,,5, Were also observed.
qu/“To q-1 In/ ' (1) These numerical and experimental indications of a very large
' value of a4 led to a conjecture that, in the limit of a large,
where the index runs over all the boxes that contain a pieceself-similar cluster some fjords will be exponentially
of the boundary. The IimiDOEIimqﬁme is the fractal, or screened and thus causiag,,— [18].

a(q). @)
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If indeed a4, this can be interpreted as a phase We thus need to find the conformal mab((w). A
transition[19] (nonanalyticity in theq dependence dd,, at  method for this purpose was developed in a recent series of
a value ofg* satisfyingg*=0. If the transition takes place papers[26—28. The mapd("(w) is made from composi-
for a valueq* <O thenap,,y is finite. Lee and Stanlej20]  tions of elementary mapg, 4,
proposed thaty,,, diverges asR?/InR with R being the
radius of the cluster. Schwarzet al. [21] proposed that OM(wW)=d (g 4 (W), (4)
amay diverges only logarithmically in the number of added
partides_ Blumenfeld and Aharonyzz] proposed that where the elementary ma@)\yg transforms the unit circle to
channel-shaped fjords are important and proposed tha circle with a semicircular “bump” of linear size\ around
amax—M*/InM, whereM is the mass of the cluster; Harris the pointw=e'’. We use below the same map , that was
and Coherj23], on the other hand, argued that straight chan€mployed in Refs[26-30. With this map®("(w) adds on
nels might be so rare that they do not make a noticeablé semicircular new bump to the image of the unit circle un-
contribution, andu,ay is finite, in agreement with Ball and der ®("~1(w). The bumps in the plane simulate the ac-
Blumenfeld who proposef4] that ay,,, is bounded. Obvi- creted particles in the physical space formulation of the
ously, the issue was not quite settled. The difficulty is that itgrowth process. Since we want to haiseed sizebumps in
is very hard to estimate the smallest growth probabilitiesghe physical space, say of fixed ateg we choose in thath

using models or direct numerical simulations. step
In a recent papef25], we used the method of iterated
conformal maps to offer an accurate determination of the _ Ao
probability for the rarest events. The main result that was )\n_|q)(n71)’(ei an)|2' ®)

announced was thai,,,, exists and the phase transition oc-

curs at aq value that is slightly negative. In the present The recursive dynamics can be represented as iterations of
paper, we discuss the results in greater detail, and offer adhe mape, 4 (W),

ditional insights to the geometric interpretation of the phase nen

transition. In Sec. Il, we summarize briefly the method of (I)(n)(w):d))\ 0.2bn. o .. .ohy 4 (). (6)
iterated conformal maps and explain how it is employed to tr e nen

compute the harmonic measure of DLA with unprecedentegk had been demonstrated before that this method represents

accuracy. In Sec. Ill, we perform the multifractal analysispLA accurately, providing many analytic insights that are
and present the calculation of tfiea) curve. In Sec. IV, we  not available otherwisf29,30.

discuss a complementary point of view of the scaling prop-
erties of the rarest regions of the measure, to achieve in Sec.

V a geometric interpretation of the phase transition. Section ) )
VI offers a short discussion. In terms of computing the harmonic measure we note the

close relationship between Eg&) and (5). Clearly, mo-
ments of the harmonic measure can be computed from mo-

Il. ACCURATE CALCULATION OF THE HARMONIC ments of\,,. For our purpose here we quote a result estab-
MEASURE lished in Ref.[27], which is

B. Computing the harmonic measure

A. DLA via iterated conformal maps 2m
_ _ (Aﬂ>z(1/2w)f N9(6)df~n—24P2q+1/D, (7)
Consider a DLA ofn particles and denote the boundary of 0

the cluster byz(s), wheresis an arc-length parametrization. ) _
Invoke now a conformal maf (" (w) that maps the exterior T0 computer(q) we rewrite this average as
of the unit circle in the mathematical plane onto the

complement of the cluster af particle in thez plane. On the "= [ g %Aq — 4 NITYA(s) 8

unit circle €'’ the harmonic measure is uniforn®(6)dé (An)= | ds ds n(8)= | ds Mo ®)

=d6é/27. The harmonic measure of an elemeid on the

cluster in the physical space is then determined as wheress is the arc length of the physical boundary of the
cluster. In the last equality we used the fact thaw/ds|

= ds =+\p/Ng. We stress at this point that in order to measure
(s)ds~ ——, 3 :
|’ M) these moments fog<0 we mustgo into arc-length repre-

sentation.

To make this crucial point clear we discuss briefly what
where ®(M(e'?)=z(s). Note that in electrostatic parlance happens if one attempts to compute the moments from the
1/|®' (M (w)| is the electric field at the position=®M(w).  definition (7). Having at hand the conformal map(™(e'?),
Thus, in principle, if we can have an accurate value of theone can choose randomly as many points on the unit circle
conformal mapd("(w) for all valuesw=¢'’ we can com- [0,2] as one wishes, obtain as mataccurate values of
pute the harmonic measure with desired precision. We wilk,, and try to compute the integral as a finite sum. The
see that this is easier said than done, but nevertheless thispsoblem is of course that using such an approthehfjords
the basic principle of our approach. are not resolvedTo see this we show in Fig. 1, left panel, the
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FIG. 2. Atypical growth process in which an existing branch cut
is “buried” under the new bump. Such events reduce the number of

FIG. 1. Left panel, the boundary of the cluster probed by abranch cuts below 2, with n being the number of particles.
random search with respect to the harmonic measure. Right panel,

the boundary of the cluster probed by the present method. ®™. We find the position on the boundary between every

: . , . ._two branch cuts, and there compute the valug of The first
region of a typical cluster of 50000 particles that is belngStep in our algorithm is to generate the location of these

visited by a random search on the unit circle, with 50000, intermediate to the branch cligs]. Each branch cut
samples. Like in direct simulations using random walks, the, 5 5 preimage on the unit circle that will be indexed with
rarest events are not probed, and no serious conclusion r% k(/) —

garding the phase transition is possible. Another method th ree indiceswj,. exr[m}‘/ 1. The indexj represents the

h Kis to v a9 b i h eneration when the branch cut was crediezl, when the
cannot work Is to try to computeh,) y sampiing onthe arc -y, particle was grown The index/” stands for the genera-
length in a naive way. The reason is that the inverse ma

-1 on at which the analysis is being dofies., when the clus-
[®*7](s) cannot resolved values that belong 1o deep or has, particles. The indexk represents the position of the

Ijr?rdas' ’AI‘S th(;,\hgtrowth fpro(;:e(_adts, r‘?pa{amf“izalﬂog ﬁque;ZQﬁanch cut along the arc length, and it is a function of the

e 0 values that map fjords into minute intervals, below the -y ; ;

computer numerical IC;ejsolution. To see this, consider the folggr?gagfn%' ggtiigiggdtwt?]ebyragn;htv(\:,l;tscgﬁé%ré%[{?\?et?ng;ses

Iowing estimate of the resolution we can achieve in theSince bumps may overla’p during growth, branch cuts are.

physical space: then covered, cf. Fig. 2. Therefore, the maximak,ay
<2/. After each iteration the preimage of each branch cut

Ag= As _ \/)\—f (9) moves on the unit circle, but its physical position remains.
|| "o This leads to the equation that relates the indices of a still
exposed branch cut that was created at generatiom later
or equivalently generatiom,
Ezﬁ (10) (D(n)(wk(n))zq)(n)(qg*l ° od,*l (W|~_<(J)))
Wo W, b2 Mofn N0 T
:@(j)(wrfjj))_ (12)

On the left hand side, we have the resolution in the physical
space relative to the fixed linear size of the particles. With
double precision numerics we can resolve valuesAaf
~10 ¢ and since we know that the values)of, oo can be
as small as 10 inside the deepest fiordsind see beloyy

Note that the sorting indicels(j) are not simply related to

k(n), and need to be tracked as follows. Suppose that the list

w1 is available. In thenth generation we choose ran-

we see that domly a newé,, and find two new branch cuts that on the
As 10716 unit circle are at angle®, . If one (or very rarely morg
—~——=10". (1) branch cut of the updated ligt, " gn(w}"(,?jll’) is covered, it
\/)‘—0 10 is eliminated from the list, and together with the sorted new
Therefore, the resolution in the physcial space that is nece®air we make the listj .

highly inappropriate. compute the value of,,. Having a cluster oh particles we

The bottom line is that to compute the values)g{s)  Now consider all neighboring pairs of preimage§;’ and
effectively we must use the full power of our iterated con—W§F2)+1 that very well may have been created at two differ-
formal dynamics, carrying the history with us, to iterate for- ent generationsandJ. The larger of these indiced (vithout
ward and backward at will to resolve accurately thand\,  loss of generalitydetermines the generation of the interme-
values associated with any given particle on the fully growndiate position at which we want to compute the field. We
cluster. want to find the preimaga'jfg‘) of this midpoint on the unit

To do this we recognize that every time we grow a semi<ircle, to compute\, there accurately. Using definition

circular bump we generate two new branch cuts in the majl2) we find the preimage
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argusP) =[argwP) +argwsP H12. (13 of 1
In Fig. 1, right panel, we show, for the same cluster of -5t ] I
50000, the mapb@(u§P) with k(n) running between 1 @ 507
andk,.y, With J being the corresponding generation of cre- -1°f 1@

ation of the midpoint. We see that now all the particles are
probed, and every single value ®f,, can be computed.

To compute thesa,, accurately, we defingin analogy
to Eq.(12)] for everyJ<ms=n, 207 0 1 2 3

-15¢ ] -100-

u'jf,ﬁ‘1)5¢;nf’9mo .. .Og{);l P u'jfﬂ')). (14 FIG. 3. Left panel, the calculated functiefiq) using clusters of

e n andn particles, withn=5000, 10 000, 15000, and 25000 and
n=10000, 15000, 25000, and 30 000, respectively. Right panel,
the second derivative af(q) with respect tag. The minima of the
curves get deeper whenis increased.

Finally, N, is computed from the definitio(b) with

O (WS =) o (U Bl (S,
37 k() verge. Note that in our calculation the small values\gf,
XOW (uy3°)- (19  are obtained from multiplication rather than addition, and
therefore can be trusted.
We wish to emphasize the relevance of this equation: the
problem with the coarse resolution that was exposed by Eq. IIl. MULTIFRACAL ANALYSIS OF THE
(11) occurs only inside the deepest fjords. We note, however, HARMONINC MEASURE
that the particles inside the deep fjords were deposited when
the clusters were still very small. For small clusters the reso- Having the accurate valueg,) we can now compute the
lution of the fjords does not pose a difficult problem. There-moments(7). Since the scaling form on the RHS includes
fore, when we evaluate the derivati®e™ inside the deepest unknown coefficients, we compute the values 7¢f)) by
fiord at a pointu}y), we make use of the fact thaten and  dividing (\%) by (\), estimating
write the derivative in the form
In(\E) —In(x)

Mgk = D' (ykny. (q)~-D———. 1
b (UJ,n) () (uJ’J ) 51 (16) (q) Inn=Inn ( 7)

where 6 refers to correcting terms. On the left hand side ofg g its forr(q) for increasing values af andn are shown
Eq. (15) we see that within our limited numerical resolution in Fig. 3, left panel. It is seen that the valuextt)) appears

k k(n) + 1 ,
us, U5 and the correponding values bf are almost ¢, grow without bound for negative. The existence of a

identical whereas for the right hand sideHS) this is notthe  yhase transition is however best indicated by measuring the
case. By keeping track of the branch cuts we improve thejerivatives ofr(q) with respect tag. In Fig. 3 right panel,
precision inside the fjords dramatically. In other words, theye show the second derivative, indicating a phase transition
large screening |n5|de the fjords is 'S|multaneously the probz; 5 value ofq that recedesaway from q=0 whenn in-
lem and the solution. The problem /IS that we cannot use thg cases. Due to the high accuracy of our measurement of
standard approach in evaluatidgf™". The solution is that we can estimate already with clusters as small as 20—30 000
for a pointu'jf,?’ inside the deepest fjords we always havethe g value of the phase transition g5 = —0.18+0.04. It is
thatJ<n and therefore the evaluatid@b) helps to improve quite possible that larger clusters would have indicated
the resolution. slighly more negative values gf (and see below the results

In summary, the calculation is optimally accurate since weof different methods of estimatesbut we believe that this
avoid as much as possible the effects of the rapid shrinkingalue is close to convergence. The fact that this is so can be
of low probability regions on the unit circle. Each derivative seen from the (a) curve that is plotted in Fig. 4. A test of
in Eq. (15) is computed using information from a generation convergence is that the slope of this function where it be-
in which points on the unit circle are optimally resolved.  comes essentially linear must agree with thealue of the

The integral (8) is then estimated as the finite sum phase transition. The straight line shown in Fig. 3 has the
\/)\—OEk(n))\E(n) . We should stress that for clusters of the orderslope of —0.18, and it indeed approximates very accurately
of 30 000 particles we already compute, using this algorithmthe slope of thd («) curve where it stops being analytic. The
Ny values of the order of 10° To find the equivalent reader should also note that the peak of the curve agrees with
small probabilities using random walks would require aboutD~1.71, as well as the fact tha{3) is alsoD as expected
10% attempts to see them just once. This is of course imposin this problem. The value o,y is close to 20, which is
sible, explaining the lasting confusion about the issue of thénigher than anything predicted before. It is nevertheless fi-
phase transition in this problem. This also means that all thaite. We believe that this function is well converged, in con-
f(a) curves that were computed befdib,32 did not con-  tradistinction with past calculations.
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FIG. 4. Calculated functior(«) using 7(q) calculated from a _ . .
cluster withn= 30 000 particles. Thi§(«) is almost indistinguish- FIG. 5. Values ofz, sorted in ascending order with respect to
able from the one Computed with=25 000 partic|esl We propose the variablex=i/N. This function is a pure power law for values of
that this function is well converged. The black dot denotes wherén x smaller than the position of the circle. The power law is char-
the curve ends, being tangent to the line with slep@.18. acterized by an exponeiit~8.55. This is consistent with a phase
transition forgq* ~ —0.23.

IV. ALTERNATIVE WAY TO APPROACH _ ) )
THE PHASE TRANSITION This power-law tail means that the moment intege)

) . o ~diverges for values of] below a critical valuey. given by
An alternative way to the multifractal analysis is obtained

by first reordering all the computed values\qf,, in ascend-
ing order. In other words, we write them as a sequence qc+§+7=—1.
{N\n()}ici, wherel is an ordering of the indices such that

M(D)=<N\,()) if i<j. The number of samples we consider is Thus,q.= — 1/2—1/8. From Eq.(7) we see that the value of

1 1-p8 (24)

usually large and therefore the discrete ind&X might be

treated as a continuous indexx&<1 and\, as a nonde-
creasing function ok,

Aa=9(Xx). (18

We next consider the distribution @i\ ), which is cal-
culated by the usual transformation formula

PO~ | TN g00lax= ———— (9
" " |g'Ix(\)]]
Using the distribution ofA,,, we now do the following re-
writings:
27 L do L
f xgdezf )\ﬂ—ds~f ATV s (20)
0 o 'ds 0
~f A Y2p () dN . (21)
0

In Fig. 5, we will show that our functiog(x) obeys a power
law for low values ofx,

g(x)~x# for x<1. (22)

This in turn implies a power-law dependencepdh ) on X\,

P(\,)~ ~ANEPE L for A<1. (29

[x(Ap) 1P~

g* satisfied the relation

q*=209.+1=-2/B. (25

In Fig. 5, we show how the values af, depend orx for
small values ofk. The data are taken from a cluster with
=20000. Denoting the value of, that is marked as a full
circle by A, the figure supports the existence of the power
law (22) for values of\, smaller than\.. Needless to say
this also implies thap(\,) scales according to E¢23). By
averaging over 16 clusters of sime= 20 000, we estimate the
slope in Fig. 5 to bg8~8.55 or

g* = —0.23+0.05. (26)

Obviously, this result is in agreement with our direct calcu-
lation in Sec. Ill.

V. GEOMETRICAL INTERPRETATION OF THE
PHASE TRANSITION

At this point we would like to interpret the origin of the
phase transition, which in light of the last section stems from
the power-law behavior gf(\,) for small values oh,,. We
first identify the region on the cluster that supports the low
values of\,, that belong to the power-law tail qf(\ ).

Consider again Fig. 5. The point denoted above\as
defines the maximum value for which we see a power law in
\n Vs X. Therefore, the set responsible for the phase transi-
tion is the union of bumps with a value af, for which X,
<\.. This set is referred to below as the “critical set,” and
is shown in Fig. 6, both on the background of the rest of the
cluster, and as an isolated set. This figure suggests a geomet-
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FIG. 6. Set of all particles that are associated with values,of 0 20 40 60 80 100
belonging to the power-law region shown in Fig. 5. In the left panel, Y

we show the set on the background of the cluster in gray; and in the

right panel, the set isolated from the rest of the cluster. FIG. 8. Distribution of angley as determined by the procedure

exemplified in Fig. 7 over the set shown in Fig. 6.
ric interpretation: the fjords in the figure all seem to have a_ . .
characteristic angle. We will try first to confirm this impres- =20000. On the basis of that we determine the angle to be
sion using careful numerics. _ . _ o y.=35°+6°, (27)
Clearly, the set has several fjords; we consider them indi-

vidually. Figure 7 shows an example of such a fjord, Forphase transition. The results presented in this section indicate

each fjord we find the point with the minimum probability that to a reasonable approximation the least accessible fjords
and use this for defining the bottotar deepest point Sec- can be modeled as a wedge of included angle In the

ond, from the inside, we move to the two adjacent pointsA di te th | teddox..) f
which together with the deepest point define an angle. This ppendix, we compute the power faw expecte HoK.,) for
angle is recorded, and we move to the next pair of points‘:Jl wedge. The final result is
and so on until the value of,, exceeds\.. Figure 7, right —\ —(27=3)/2(3—1)

P(Np)~N\, , (28

panel shows how the angle varies with the number of dteps
For most of the fjords considered the angle is quite large foghere ye= /7. Using our numerical result foy, and Eq.
a small number of stepsip to 3 to 4 steps As more steps  (25) we predict finallygq* = — 0.24+ 0.05. Obviously, this is
are taken the angle settles on a characteristic value aroung agreement with the previous findings.
which it fluctuates. For a larger number of steps we reach the |5 gddition, we should comment on the interpretation of
outer parts of the fjord and the angle does no longer reflect, ) that is the value of thé(a) curve at the point of
the geometry inside the fjord. The dependence of the anglgss of analyticity. Within the wedge model offered here, this
onkas shown in Fig. 7 is typical for all the fjords of the set nyst pe the fractal dimension of the set of wedges that sup-
causing the phase transition and therefore we see a peak ﬂ)‘@)rt the scaling law(28). We have attempted to determine
the distribution of all the measured angles. This peak identithis dimension numerically by counting the number of fijords
fies an angle that is characteristic to the fjords. Figure 8 is th@, the critical set shown in Fig. 7 as a function of the number
distribution of such typical angles over one cluster. We def pariclesn in the cluster. While the result of such a calcu-
termine the characteristic angle, sgyby locating the maxi- |ation is consistent with the proposition, the available statis-
mum of the distribution. Finally, we calculated the averageyics is not sufficient to establish it firmly. We thus conclude
of the charateristic angley. over 15 clusters of siz&é  jth the proposition as a conjecture, i.e., thét,a,) can be
interpreted as the dimension of the set of fjords that belong
e to the critical set.

Finally, we can offer a geometrical model to interpret the

VI. CONCLUDING REMARKS

=g @ In conclusion, we have used the method of iterated con-
formal maps to compute accurately the harmonic measure of
0 DLA clusters of moderate size. We have explained that we
&7 must use the full power of the method in order to overcome
4o & the strong contraction of the regions on the unit circle that
0 5 10 15 20 25 30 35 0 5 10 15 20 25 belong to the deep fjords. By iterating back and forth, using
X k the fact that we own the history of the iteration scheme, we
FIG. 7. Left panel, a typical deep fiord resolved on the scale ofcould resolve probabilities as small as £ Using this data
the particles. From the deepest particle the angle is computed € could establish beyond doubt that the generalized dimen-
explained in the text. Right panel, the change of the measured ang&ons[or, equiviently, thef («) function] lose analyticity at a
v as a function of the number of stegsaway from the deepest negative value of}, implying the existence afk,,. In order
particle. The angle settles on a value that depends only weakly on to understand the loss of analyticity, we offer a geometric

10 15 20 25 30 35
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picture. We identified the critical set on the cluster as having 27 1
harmonic probabilities that belong to the power-law tail of E(p)=— ———=~29p "D for p>1. (A6)
p(\,). Considering this set we identified fjords that can be p pitp 7

modeled as wedges of characteristic angle. Taking Su%&xactly the same relations hold for the upper ray
wedges as a model for the fjords of the critical set, we foun '
a value ofg* that is very close to the one computed using
other methods. We thus propose that the point of nonanalyt-
icity can be interpreted as resulting from the power-law de- The linear size of the particles in mathematical spakg
pendence of the harmonic measure in the fjords belonging tis proportional to the electric field,

the critical set.

2. The probability measure for A,

An(8)= VN E(@(€')). (A7)

Thus, the probability measure of the is directly related to
This work has been supported in part by the Petroleunthe probability measure of the electric field. Sir€ds the
Research Fund, The European Commission under the TMBame for the two rays of the wedge, it is sufficient to con-
program, and the Naftali and Anna Backenroth-Bronickisider it only on the real axis. Starting from the uniform dis-
Fund for Research in Chaos and Complexity. A. L. is sup-ribution of the § values in mathematical space, it follows:
ported by of the Minerva Foundation, Munich, Germany.
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_dP(6) dP(E) dEHdp

APPENDIX: WEDGE MODEL FOR THE FJORDS OF THE - de  dE E ﬁ
CRITICAL SET dPIdE d 1
1. The conformal map and the electric field = d?‘%‘ - i@'”[q’_lﬁo)]‘
The conformal function dPldE
[ N N b §
w1\ 17 dE‘dp E (A8)
x(W)=\io—7 (A1) o

maps the outside of the unit circle to the inside of a wedge dE -1

with opening angley.= =/, wherenp=1 allowsy, be vary dP(E)~ d—(p) E dE (A9)

between 0 andr. To calculate the electric fiell, we need p

the inverse ofy: The derivative of the electric field follows fromA5) or

(A6),
1 z7+i
X @)= (A2) dE | 29 |(p+1)p"—(n—1)p 7|

—(p)|== - . (A10)
dp p (p7+p~7)?

From here we see that 1(0)=—1 and o

yielding
O Ypexdim(1+x1)29])—1 as p—x. (A3) -
p(p7+p=7)

dP(E) dE. (A11)

Thus, the unit circle is unfolded onto the wedge; shifting the l(p+1)p"—(p—21)p "
pointw= —1 to the originz=0; and rotating and stretching
the upper half circle onto the real axis and the lower halfFor smallp corresponding to a small field and thus small
circle to the other ray of the wedgee'™ 7. The electric field A, we get
follows from its definition
dP(E)~pdE~EY7~ 1D (A12)

27 1 or

d _
E(Z)=‘d—z|”[)( 1(Z)]ZH m (A4)

dP(VN )~ N 7 Dd N, (A13)

i i.e. =p<li - . .
On the real axis close to the centet 0, i.e., forz=p<1 it For the probability density ok, this means

becomes
dP(V\p) dA
27 1 dP()\n)z(—\/—n) s (A14)
E(p)=— ———=~25p7 ' for p<l, (A5) dn 2V,
P pT’+p 7
NA;(Zn%)/Z(n*l)d)\n_
while for largep is goes like (A15)
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