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Labyrinthine clustering in a spatial rock-paper-scissors ecosystem
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The spatial rock-paper-scissors ecosystem, where three species interact cyclically, is a model example of how
spatial structure can maintain biodiversity. We here consider such a system for a broad range of interaction
rates. When one species grows very slowly, this species and its prey dominate the system by self-organizing
into a labyrinthine configuration in which the third species propagates. The cluster size distributions of the two
dominating species have heavy tails and the configuration is stabilized through a complex spatial feedback loop.
We introduce a statistical measure that quantifies the amount of clustering in the spatial system by comparison with
its mean-field approximation. Hereby, we are able to quantitatively explain how the labyrinthine configuration
slows down the dynamics and stabilizes the system.
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I. INTRODUCTION

Spatial migration of species is crucial for the viability of
many ecological systems. As a striking example, crickets are
known to locally deplete their nutritional resources to an extent
where mass migration is the only alternative to cannibalism
[1,2]. Once the crickets have left an area, they cannot return
until the natural resources have been reestablished. Likewise,
deadly viruses and bacteria depend on constantly infecting
new hosts to survive [3–5].

The rock-paper-scissors game has emerged as a paradigm to
describe the impact of spatial structure on biodiversity [6–12].
In this system, three species interact cyclically such that
species 1 can invade species 2, which can invade species 3,
which, in turn, can invade species 1 [see Fig. 1(a)]. Such an
intransitive interaction pattern is very similar to the important
genetic regulatory network the repressilator [13,14] and has
been identified in many ecological systems, among others
in marine benthic systems [15,16], plant systems [17–19],
terrestrial systems [20,21], and microbial systems [22–26]. In
such systems, all species constantly need to migrate spatially
to survive, but they may do this at very different speeds. In
investigations of three strands of Escherichia coli bacteria
with cyclic interactions, it has been shown that biodiversity
cannot be preserved unless spatial structure is imposed by
arranging the bacteria on a Petri dish [6,7,27]. These results
have been reproduced in Monte Carlo simulations [28–32], but
even though many different analytical approaches have been
applied, exactly how spatial structure stabilizes the system is
still an open problem [33–35].

II. MODEL

We study the rock-paper-scissors game on a square lattice
of L × L nodes and periodic boundary conditions. Each node
is occupied by one of the three species 1, 2, or 3 growing at
rates v1, v2, and v3, respectively. In each update a random node
i and a random one of its neighbors j are selected. If i can
invade j according to the cyclic interacting pattern illustrated
in Fig. 1(a), it will do so with a probability equal to vi .

III. RESULTS

When the three species are initiated from a random config-
uration and with equal growth rates, they quickly organize into

a steady state where all species are equally abundant and form
small clusters [see Fig. 1(b)]. If the growth rate of species 3
is increased compared to species 1 and 2, species 2 becomes
more abundant on the lattice and all three species form larger
clusters [see Fig. 1(c)]. This paradoxical behavior, that the
biomass of one species increases proportionally to the growth
rate of its prey, is characteristic for the rock-paper-scissors
system [28,29,36].

Similarly, if the growth rate of species 1 is decreased,
species 3 slowly becomes scarcer until the system eventually
collapses to a state where only the slow species 1 survives
[28,37]. The larger the system size is, the smaller v1 can
be while still maintaining biodiversity. Approaching the limit
v1 → 0, a very large lattice is required in order for species 3
to be viable. In this limit an interesting spatial organization
is observed. Species 3 propagates through the lattice in thin
and broken wave fronts in constant flight from species 2.
In the rest of the system the slowly growing species 1 and
its prey, species 2, are tangled in a complex configuration
with an enormous mutual perimeter. This spatial organization
forms an ever-changing labyrinth of narrow pathways in which
species 3 propagates [see Figs. 1(d)–1(f)]. The more narrow
and twisted the labyrinth becomes, the longer it will take
for species 3 to return to a particular location, which gives
species 1 more time to grow, forming broader pathways. This
complex spatial feedback loop, which is independent of the
choice of boundary conditions, stabilizes the configuration,
and is destroyed if the species are allowed to diffuse or if a
death rate is introduced [38].

Emergence of labyrinthine patterns has previously been
observed in magnetic liquids, confined granular-fluid sys-
tems, and chemical reaction-diffusion systems [39–41]. In a
labyrinthine cluster, points i and j that are close to each other
in terms of geodesic distance dgeo are separated by a long
distance dpath, if one is restricted to only travel only along
the connected component. To characterize how labyrinthine
the spatial organization of a species is, we introduce the local
measure

ξi = max
j∈c.c.(i)

(
dpath(i,j )

dgeo(i,j )

)
, (1)

with the spatial average ξ = 〈ξi〉. Thus, ξi describes how much
longer at most one needs to travel along the labyrinth from a
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FIG. 1. (Color online) Spatial self-organization in the rock-paper-
scissors game. (a) The three species interact cyclically. Species i

invades its prey at rate vi . (b)–(d) Snapshots of the steady-state spatial
organization of the three species when (b) all species grow at the same
rate and L = 300; (c) species 3 grows five times faster than 1 and 2
and L = 300; (d) species 1 grows 1250 times more slowly than 2 and
3 and L = 12 800. (e),(f) Zooms of the system in (d).

point i to any other point j in the same connected component,
compared to the geodesic distance. ξi pinpoints regions with
strong labyrinthine structure, and is found to exhibit huge
spatial variations for real labyrinths, critical percolation, or as
here for the slow species in a rock-paper-scissor relationship
[38]. In Fig. 2(d) it is seen that ξ of species 1 steadily increases
as its growth rate decreases exponentially, confirming that a
labyrinthine pattern emerges.

In order to describe the spatial self-organization in steady
state, we study the probabilities p1, p2, and p3 of a random
node to be occupied by species 1, 2, or 3, respectively.
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FIG. 2. (Color online) Species abundances and correlations for
small v1. (a) When the growth rate of species 1 is decreased, species
3 becomes less abundant. The mean-field theory provides a good
approximation to the abundances. (b) The spatial correlation between
different species are much lower than predicted by the mean-field
theory due to clustering. (c) The ratio between the predicted mean-
field correlations and the observed correlations are equal for all
species. This ratio defines χ . (d) When the growth rate of species
1 is decreased, it begins to form labyrinthine clusters. Thus, the path
distance between two points i and j in the same cluster becomes
much longer than the geodesic distance. This ratio is described by ξ .
(e) When v3 � v1,v2, the ratio χ diverges corresponding to the large
clustering in Fig. 1(c). When one species grows much more slowly
than the others, χ approaches 5, which gives rise to the labyrinthine
clustering in Fig. 1(d).

Furthermore, we are interested in the spatial correlations pij

between species i and j . That is, the probability of a random
node and a random one of its neighbors to be occupied by
species i and j , respectively.

Given these correlations the time evolution of species
abundances is given by [33]

ṗ1 = v1p12 − v3p31, (2)

where the equations for ṗ2 and ṗ3 follow by cyclic permutation
of the indices 1, 2, and 3. This symmetry also holds for all
subsequent equations of this article.

In the mean-field approximation, all nodes are linked
and spatial structure does not exist. Then the correlation
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between two species is simply given by the product of species
abundances p̃12 = p̃1p̃2, where the tilde (∼) denotes that the
mean-field approximation has been applied. If this is inserted
into (2) and the time derivatives are set to zero, one obtains the
steady-state solution

p̃1 = v2

v1 + v2 + v3
, (3)

p̃12 = v2v3

(v1 + v2 + v3)2
. (4)

In Figs. 2(a) and 2(b) the steady-state abundances and
correlations are shown at constant v2 = v3 = 1 and varying
v1 � 1. It is seen that a slow growth rate of species 1 leads
to a decline in the abundance of species 3. Mean-field theory
provides a good approximation for how abundances depend
on growth rates, with the only slight deviation that species 2
becomes slightly more abundant than species 1 for low v1.
However, the mean-field approach cannot capture the spatial
organization of the species, and thus it predicts interspecies
correlations far larger than those observed in simulations [see
Fig. 2(b)]. The fact that the abundances are correctly predicted
indicates that the mean-field correlations are proportional to
the true, spatial correlations. Indeed, if (2) is set to zero for both
the spatial and mean-field systems one can derive the relations

p̃12

p12
= p̃23

p23
= p̃31

p31
≡ χ. (5)

Here we have introduced the ratio χ , defined by how much
the time average of the correlations between two species is
larger in the steady state of the mean-field approximation
compared to the spatial system [see Fig. 2(c)]. This statistical
measure describes the spatial and dynamical organization of
the rock-paper-scissors game for varying growth rates. The
intuition behind χ is the following.

The average time before a node of species 2 is invaded
by species 1 is given by T1 = p2

v1p12
for the spatial system

and T̃1 = p̃2

v1p̃12
in mean field. Therefore, χ ≈ T1

T̃1
provides a

measure for how much longer each species on average lives
on a node before being invaded, compared to the result in
the mean-field system, i.e., how much the spatial organization
slows down the dynamics. Furthermore, when χ is large the
correlations of the spatial system are much smaller than in
the mean-field system, according to (5), so the species must
have a high degree of clustering. Hence, χ gives a measure for
the clustering of the spatial system. These two interpretations
are, of course, tightly connected. If the average cluster
diameters are doubled, each node will live for twice as long
before being invaded, corresponding to increasing χ by a factor
of 2.

How does χ depend on the growth rates of the three species?
In Fig. 2(e) this dependency is shown as a function of the
relative growth rates v1

v3
and v2

v3
, with v3 chosen to be the fastest-

growing species. When all growth rates are equal we have
χ ≈ 2.5, corresponding to the moderate amount of clustering
observed in Fig. 1(b). When species 3 grows much faster than
the two other species, such that both growth ratios go to zero,
χ becomes very large. This agrees well with the large amount
of clustering observed in Fig. 1(c).

When only v1 → 0 we see from Figs. 1(d) and 2(d) that χ

approaches a finite value close to 5. In this limit, we expect
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FIG. 3. (Color online) Cluster size distributions. (a) When all
species grow at the same rate, all clusters consist of fewer than 5000
nodes. Here v1 = v2 = v3 = 1. (b) When the growth rate of species
1 is decreased, species 3 becomes less abundant and large clusters of
species 1 and 2 become more likely. Here v1 ≈ 0.5 and v2 = v3 = 1.
(c) In the limit v1 → 0 the cluster size distributions of species 1 and
2 become heavy tailed with a cutoff set by the system size. Here
v1 � 0.007 and v2 = v3 = 1. For all plots L = 2048.

from (3) that p3 → 0 while p1 ≈ p2 → 1
2 . In this case, the

amount of clustering of species 3 is limited. The observation
of χ suggests that clustering reduces the spatial correlation
between species 2 and 3 by only a factor of 5 compared to the
mean-field system. This sets an upper bound for how much
species 1 and 2 can cluster. The mean-field approach predicts
a correlation of p̃12 = 1

4 , so with χ ≈ 5 Eq. (5) dictates the
spatial correlation to be p12 ≈ 1

20 . This agrees well with the
12 800 × 12 800 system in Fig. 1(d), where v1 = 0.0008, v2 =
v3 = 1, and p12 ≈ 0.05, which is also evident from Fig. 2(b).

While the value of χ quantifies the average amount of
clustering, it does not provide information on the cluster size
distribution. In the case where all species grow with the same
rate, Fig. 1(b) suggests that clusters have a characteristic size.
Indeed, Fig. 3 shows that the cluster size distribution in this
case sharply decreases for clusters larger than 1000 nodes.
When the growth rate of species 1 goes to zero, however,
species 3 continues to be organized in small clusters, but large
clusters of species 1 and 2 become much more likely. The
cluster size distributions of these become exceedingly broad,
culminating in a heavy tail distribution with a cutoff that is set
by the system size.

An alternative approach that has been applied to describe
the spatial organization of the rock-paper-scissors game is
the pair approximation [34,42]. This approximation predicts
χ = 1.5, which is far from the observed value of χ = 2.5,
further illustrating the inability of the pair approximation to
describe the behavior of the rock-paper-scissors game.
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IV. DISCUSSION

Our results quantitatively describe how spatial clustering
slows down the dynamics of the rock-paper-scissors game, and
why this leads to a labyrinthine spatial organization in the limit
where one species grows slowly compared to the two others:
an organization that includes a type of excitable front that
propagates on self-organized labyrinthine clusters distributed
over many length scales. In this limit of one slow species, the
largest clusters of both the slow species and its prey cover a
large fraction of the system, as seen in Fig. 2(d). This conse-
quence of the labyrinthine configuration would not be possible
in site percolation, where each of the large species would need
to occupy close to 60% of the nodes to percolate [43].

Interestingly, the extreme version of the rock-paper-scissors
ecology with one slow species resembles the forest fire model

in a fire-tree-ashes analogy [44–46]. The slow species would
then be forest, which is burned by fire, which is replaced by
ashes, from which trees can again slowly grow. The main
differences from existing forest fire models are that in the
present system trees can grow only in the neighborhood
of other trees and fire can be extinguished only in the
neighborhood of ashes.

The method of quantifying how much clustering slows
down the dynamics of a spatial system, compared to the
mean-field approximation, is quite general, and we expect
it to be applicable on a broad range of dynamical systems.
In particular, it may be useful in predicting the spatial
organization in predator-prey models, which continues to
attract much attention within the field of complex systems
[47,48].

[1] S. Simpson, G. Sword, P. Lorch, and I. Couzin, Proc. Natl. Acad.
Sci. USA 103, 4152 (2006).

[2] G. Sword, P. Lorch, and D. Gwynne, Nature (London) 433, 703
(2005).

[3] D. Morens, G. Folkers, and A. Fauci, Nature (London) 430, 242
(2004).

[4] K. Sneppen, A. Trusina, M. H. Jensen, and S. Bornholdt, PloS
One 5, e13326 (2010).

[5] J. Juul and K. Sneppen, Phys. Rev. E 84, 036119 (2011).
[6] B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan,

Nature (London) 418, 171 (2002).
[7] T. Reichenbach, M. Mobilia, and E. Frey, Nature (London) 448,

1046 (2007).
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